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1 Fundamental Theorem of
Arithmetic

1.1 Least Integer Axiom and Mathematical Induction

Let

Z = {0,±1,±2, · · · }

be the set of integers. Let N denote the set of non-negative integers. The Least

Integer Axiom, also known as the Well Ordering Principle, states that there is

a smallest integer in every nonempty subset of non-negative integers.

Remark 1.1 One can show that the least integer axiom implies the principle

of mathematical induction. Conversely, the principle of mathematical induction

implies the least integer axiom.

1.2 The Division Algorithm

theorem 1.1 (Division Algorithm) Let a and b be integers such that b > 0.

Then there exist unique integers q and r with

a = bq + r, where 0 ≤ r < b.

Proof

Let

S = {y ∈ Z|y = a− bx, x ∈ Z and y ≥ 0}.

Note that since

a− b(−|a|) = a+ b|a| ≥ 0,

we find that

a+ b|a| ∈ S,
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and we conclude that S is nonempty. By the Least Integer Axiom, S contains a

least non-negative integer, which we denote by r. We note that since r ∈ S,

r = a− bq,

for some integer q. We therefore conclude that

a = bq + r and r ≥ 0.

We now show that r < b. Suppose r ≥ b. Then

r − b ≥ 0 and r − b = a− b(q + 1).

This implies that

r − b ∈ S.

By assumption, b > 0 and hence r− b < r. Hence, we have found a non-negative

integer r− b contained in S and smaller than r. This contradicts the minimality

of r and we conclude that r < b.

Finally, we show that the integers q and r are unique. We suppose the contrary.

Then there is a different representation of the form a = bq′ + r′. This implies

that

b(q′ − q) = r − r′ (1.1)

and we conclude that |r − r′| is a multiple of b. On the other hand, both r, r′ ∈
[0, b) and |r − r′| can be a multiple of b only when |r − r′| = 0. In other words,

r = r′ and by (1.1), q = q′. This contradicts the fact that the representations

a = bq′ + r′ a = bq + r are different and therefore, the integers q and r must be

unique.

When r = 0 in Theorem 1.1, we have a = bq and we say that b divides a and

we write b|a. When r > 0, we say that b does not divide a and we write b - a.

definition 1.1 If an integer b divides a, we say that b is a divisor of a and

that a is a multiple of b.

definition 1.2 We say that a positive integer is a prime if it has exactly two

divisors, namely, 1 and itself.

We now state some elementary properties of divisibility.

theorem 1.2 Let a, b, d,m and n be nonzero integers. The following state-

ments are true:

(a) For all nonzero integers k, k|k.
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(b) If d|n and n|m, then d|m.

(c) If d|n and d|m, then d|(an+ bm).

(d) If d|n, then ad|an.

(e) If ad|an and a 6= 0, then d|n.

(f) If d|n, then |d| ≤ |n|.
(g) If d|n and n|d, then |d| = |n|.
(h) If d|n, then

(n
d

) ∣∣n.

Proof

We will prove (c) and leave the rest of the statements as exercises. Since d|n,

we find that n = ds for some integer s. Similarly, d|m implies that m = dt for

some integer t. Now,

an+ bm = ads+ bdt = d(as+ bt).

This shows that d|(an+ bm) for any integers a and b.

In Theorem 1.2 (h), we see that if d is a divisor of n, then n/d is also a divisor

of n. If d is a divisor of n, then we call n/d is called the conjugate divisor of d.

We say that a is congruent to b modulo n when n|(a− b). The notation is

a ≡ b (mod n).

With this notation, we conclude from Theorem 1.1 that given integers a and

b ≥ 1, there exists a unique r with 0 ≤ r < b such that

a ≡ r (mod b).

theorem 1.3 (Basic Properties of Congruences) Let a, b, c, d, n be integers

with n > 0. Then

(a) For all integers k, k ≡ k (mod n).

(b) If a ≡ b (mod n) then b ≡ a (mod n).

(c) If a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n).

(d) If a ≡ b (mod n) and c ≡ d (mod n) then a + c ≡ b + d (mod n) and

ac ≡ bd (mod n).

1.3 Greatest common divisors

definition 1.3 Let a and b be integers for which at least one of them is

non-zero. A common divisor of integers a and b is an integer c with c|a and c|b.
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definition 1.4 A greatest common divisor of integers a and b is a number d

with the following properties :

(a) The integer d is non-negative.

(b) The integer d is a common divisor of a and b.

(c) If e is any common divisor of a and b, then e|d.

The greatest common divisor of two integers (one of which is non-zero) is unique.

It is written as

(a, b).

We will show later that the greatest common divisors of two integers a and b

exists.

Remark 1.2 Note that if b 6= 0 and a = 0 then |b| = (b, 0).

We will next show that the greatest common divisor of two integers exists. By

Remark 1.2, it suffices to consider the case when both a and b are nonzero.

theorem 1.4 Let a and b be nonzero integers.Then there exists integers m,n

such that

(a, b) = am+ bn.

Proof

We give a proof of the above using facts from cyclic groups. We first recall that

if G is a cyclic group and H is a subgroup of G, then H is cyclic. To see this, let

G be generated by g. Since H is a subgroup of G,

H = {g`|` ∈ T}

where T is a subset of Z. Let r be the smallest positive integer in T . The existence

of r is guaranteed by the least integer axiom. We claim that H is generated by

gr. Suppose not. Then by Theorem 1.1, there exists ` ∈ T such that

` = rq + s, 0 < s < r.

Note that

grq ∈ H and g` ∈ H

implies that

gs = g`−rq ∈ H.
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Hence, s ∈ T and 0 < s < r, contradicting the minimality of r. Therefore, H is

cyclic. Now, (Z,+) is a cyclic group generated by 1. The set

Q = {am+ bn|m,n ∈ Z}

is a subgroup of Z. This can be seen using the subgroup criterion as

(am+ bn)− (am′ + bn′) = a(m−m′) + b(n− n′) ∈ Q.

By the property of cyclic group, we conclude that Q is generated by a positive

integer d.

Now, d = aα + bβ for some integers α and β since d ∈ Q. Note that a =

a + b · 0 ∈ Q and so a = du since Q is generated by d. Therefore d|a. Similarly,

d|b. Therefore d is a common divisor of a and b.

Next, let c be a common divisor of a and b. Write a = cν and b = cω. Then

d = aα+ bβ = c(να+ ωβ)

implies that c|d. Since d > 0, we conclude that d = (a, b) as d satisfies the

conditions defining the greatest common divisors of a and b.

definition 1.5 We say that two integers a and b are relatively prime if

(a, b) = 1.

theorem 1.5 Let a and b be nonzero integers. Then (a, b) = 1 if and only if

1 = ax+ by for some integers x and y.

Proof

Since (a, b) = 1, by Theorem 1.4,

1 = ax+ by

for some integers x and y.

Conversely, if

1 = ax+ by,

then (a, b)|a and (a, b)|b, and therefore (a, b)|1. This implies that (a, b) = 1.

We now list down some basic properties of the greatest common divisor of two

integers.

theorem 1.6 Let a, b and c be nonzero integers. Then

(a) (a, b) = (b, a)
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(b) (a, (b, c)) = ((a, b), c) and

(c) (ac, bc) = |c|(a, b).

Proof

We will prove only (c) and leave the proofs of the other statements as exercises.

Let d = (ac, bc) and d′ = |c|(a, b). By Theorem 1.4,

d = acx+ bcy

for some integers x and y. Hence,

d =
c

|c|
(a · |c| · x+ b · |c| · y) . (1.2)

Now, d′ = |c|(a, b) and since (a, b)|a and (a, b)|b, we find that d′ is a common

divisor of a · |c| and b · |c| and therefore, by (1.2), d′|d.

Next, since d′/|c| = (a, b), by Theorem 1.4,

d′

|c|
= au+ bv

for some integers u and v. This implies that

d′ = a · |c| · u+ b · |c| · v =
|c|
c

(acu+ bcv) .

But d is a common divisor of ac and bc and hence d|d′. Since d′|d and d|d′, we

conclude by Theorem 1.2 (g) that |d| = |d′|. Since both d and d′ are positive, we

deduce that d = d′.

We have seen the definition of the greatest common divisor of two integers a

and b. The greatest common divisor of m integers is defined in a similar way. It

is a positive integer d which is the divisor of a1, · · · , am satisfying the property

that any common divisor of a1, · · · , am divides d. The notation for the greatest

common divisor of m integers is (a1, a2, · · · , am). For example, one can show

that

(a, b, c) = (a, (b, c)) = ((a, b), c) = ((a, c), b).

1.4 The least common multiple

definition 1.6 The least common multiple of two integers a and b with b 6= 0

is defined as an integer m satisfying

(a) m is a positive integer,

(b) a|m and b|m,
(c) If a|` and b|` then m|`.



8 Fundamental Theorem of Arithmetic

The notation for the least common multiple of a and b is [a, b].

An important identity relating (a, b) and [a, b] is

theorem 1.7 Let a and b be positive integers. Then

ab = [a, b](a, b).

Proof

Our first step is to prove that if (u, v) = 1, u|m and v|m then uv|m. Write

m = uα and n = vβ. Note that 1 = (u, v) implies that

1 = uν + vω.

Hence,

m = muν +mvω = vβuν + uαvω = uv(βν + αω).

Therefore uv|m.

For our second step, we show that if c ∈ Z+, then

c[h, k] = [ch, ck].

Let ` = [h, k] and `′ = [ch, ck]. Now, h|` and k|`, then ch|c` and ck|c`. This

implies that `′|c` or `′/c|`. Next ch|`′ and ck|`′. Then h|(`′/c) and k|(`′/c) and

`|(`′/c). Therefore, ` = `′/c or c` = `′.

Now, suppose that d = (a, b). Then

1 = (a/d, b/d),

since c(a, b) = (ca, cb) for c > 0 (see (c)). By the first step,

[a/d, b/d] = ab/d2.

Therefore,

ab = d(d[a/d, b/d]) = d[a, b]

by the second step.

1.5 Euclid’s Lemma

We know that if c 6= 0 then ca = cb implies that a = b. This is known as the law

of cancelation for equality. The law is not true in general if we replace “=” by

≡. For example, 15 ≡ 3 (mod 12) but 5 6≡ 1 (mod 12). The next result shows

that the law of cancelation holds if we impose a condition on the integer c.
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theorem 1.8 Let a, b, c and n be integers. If ca ≡ cb (mod n) and (c, n) = 1,

then a ≡ b (mod n).

Proof

Since (c, n) = 1 there exist integers x and y such that cx+ ny = 1. Multiplying

a and b yields

acx+ any = a

and

bcx+ bny = b,

respectively. Since ac ≡ bc (mod n), we conclude that a − b ≡ (ac − bc)x ≡ 0

(mod n) and hence,

a ≡ b (mod n).

Theorem 1.8 can be used to prove the following result of Euclid.

corollary 1.9 Let a and b be integers and p be a prime. If p|(ab), then p|a
or p|b.

Proof

For any integer n, (n, p) = 1 or p since p has only two divisors. Suppose p - a.

Then (p, a) = 1. By Theorem 1.8, the relation

ab ≡ 0 (mod p)

then implies that

b ≡ 0 (mod p).

By induction, we have the following:

corollary 1.10 Let a1, a2, · · · , am be integers and let p be a prime. If

p|(a1a2 · · · am) then p|ak for some k.
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1.6 Fundamental Theorem of Arithmetic

theorem 1.11 (Fundamental Theorem of Arithmetic) Every positive integer

n > 1 can be expressed as a product of primes; this representation is unique

apart from the order in which the factors occur.

Proof

We first show that n can be expressed as a prime or a product of primes. We

use induction on n. The statement is clearly true for n = 2 since 2 is a prime.

Suppose m is a prime or a product of primes for 2 ≤ m ≤ n− 1. If n is a prime

then we are done. Suppose n is composite then n = ab, where 1 < a, b < n. By

induction each of the a and b is either a prime or a product of primes. Hence,

n = ab is a product of primes. By mathematical induction, every positive integer

n > 1 is a prime or a product of primes.

To prove uniqueness, we use induction on n again. If n = 2 then the repre-

sentation of n as a product of primes is clearly unique. Assume, then that it is

true for all integers greater than 1 and less than n. We shall prove that it is also

true for n. If n is prime, then there is nothing to prove. Assume, then, that n is

composite and that n has two factorizations, say,

n = p1p2 · · · ps = q1q2 · · · qt. (1.3)

Since p1 divides the product q1q2 · · · qt, it must divide at least one factor by

Corollary 1.10. Relabel q1, q2, ..., qt so that p1|q1. Then p1 = q1 since both p1 and

q1 are primes. In (1.3), we may cancel p1 on both sides to obtain

n/p1 = p2 · · · ps = q2 · · · qt.

Now the induction hypothesis implies that the two factorizations of n/p1 must

be the same, apart from the order of the factors. Therefore, s = t and the

factorizations in (1.3) are also identical, apart from order. This completes the

proof.

In subsequent chapters, whenever we write

n = pα1
1 pα2

2 · · · pαrr ,

we mean that pα1
1 pα2

2 · · · pαrr is the prime power decomposition of n that is unique

up to rearrangement of factors. When we write

n =

r∏
k=1

pαkk

we mean that αj 6= 0, 1 ≤ j ≤ r. If we write

n =
∏
p

pαp ,
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then we understand that only finitely many αp’s are nonzero.

We also observe that using the Fundamental Theorem of Arithmetic, we de-

duce that if

a =
∏
p

pαp b =
∏
p

pβp ,

then

(a, b) =
∏
p

pmin(αp,βp)

and

[a, b] =
∏
p

pmax(αp,βp).

Hence,

(a, b)[a, b] = ab,

since

min(h, k) + max(h, k) = h+ k.

This gives another proof of Theorem 1.7.



2 Arithmetical Functions

2.1 Arithmetical functions

definition 2.1 A real or complex-valued function defined on the set of posi-

tive integers is called an arithmetical function.

example 2.1 Here are examples of arithmetical functions:

1. The function u(n) = 1 for all positive integers n.

2. The function N(n) = n for all positive integers n.

3. The function d(n), the number of divisors of n.

4. The function σ(n), the sum of divisors of n.

Given an arithmetical function f(n), we can construct a new arithmetical func-

tion g(n) by letting

g(n) =
∑
d|n

f(d).

Here the notation
∑
d|n

f(d) means the sum of f(d) over all divisors of n.

Note that with the above notation, we may write

d(n) =
∑
`|n

1 =
∑
`|n

u(`)

and

σ(n) =
∑
`|n

`.

In other words, d(n) is constructed from u(n) and σ(n) is constructed from N(n)

via the summation over divisors of n. This construction of a new function from
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a known function reminds us of constructing new continuous function through

the integration of continuous function in Calculus.

Remark 2.1 If d|n then n = d(n/d) and this implies that n/d divides n. If

n/d divides n then d|n. Summing over d is the same as summing over n/d since

there is a one-one correspondence between these divisors. Therefore,∑
d|n

f(d) =
∑

(n/d)|n

f(d) =
∑
d′|n

f(n/d′) =
∑
d|n

f(n/d). (2.1)

example 2.2 Show that
σ(n)

n
=
∑
d|n

1

d
.

Solution

Note that

σ(n) =
∑
d|n

d =
∑
d|n

n

d
= n

∑
d|n

1

d
.

2.2 Multiplicative functions

definition 2.2 An arithmetical function f is said to be multiplicative if

f(1) = 1

and

f(mn) = f(m)f(n) whenever (m,n) = 1.

definition 2.3 An arithmetical function f is said to be completely multiplica-

tive if f(1) = 1 and for all positive integers m and n,

f(mn) = f(m)f(n).
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example 2.3 The functions u(n), N(n) are completely multiplicative. The

functions ϕ(n), d(n) and σ(n) are all multiplicative but not completely mul-

tiplicative. (We will show later that ϕ(n) is multiplicative.) The functions

ω(n),Ω(n) and Λ(n) are not multiplicative.

Suppose n > 1 is an integer written in the form

n =

k∏
i=1

pαii

and if f is multiplicative, then

f

(
k∏
i=1

pαii

)
=

k∏
i=1

f(pαii ).

This shows that if f is multiplicative, then its value at any positive integer n is

determined by its values at prime powers.

If f(n) is completely multiplicative, then

f

(
k∏
i=1

pαii

)
=

k∏
i=1

f(pi)
αi

and the values of f(n) is completely determined by the values of f(p) for prime

p.

We now prove a simple but useful result for multiplicative functions.

theorem 2.1 Let f be a multiplicative function. Then the function

g(n) =
∑
`|n

f(`)

is also multiplicative.

Proof

It is immediate that g(1) = 1. Let (m,n) = 1. Then observe that if `|mn, then

we may write ` = `1`2 with `1|m and `2|n since m and n are relatively prime.

To see this, suppose `|mn and let `1 = (`,m), `2 = (`, n). Note that `1|m and

`2|n and

`1`2 = (`,m)(`, n) = (mn, `(m,n), `2) = (mn, `, `2) = (mn, `) = `.
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Therefore

g(mn) =
∑
`|mn

f(`)

=
∑
`1|m

∑
`2|n

f(`1)f(`2)

= g(m)g(n).

Remark 2.2

1. Let

σα(n) =
∑
d|n

dα,

where α ∈ Z. Note that σ1(n) = σ(n) and σ0(n) = d(n). Since dα is multi-

plicative, by Theorem 2.1, σα(n) is multiplicative. Therefore d(n) and σ(n)

are both multiplicative.

2. We can also show that ϕ(n) is multiplicative using similar argument but at

the moment, we will defer the proof of this fact.

3. Note that if f(n) is completely multiplicative,
∑
d|n

f(d) may not be completely

multiplicative. For example, u(n) is completely multiplicative but d(n) =
∑
d|n

1

is not completely multiplicative.

2.3 Perfect numbers and σ(n)

An integer n is said to be perfect if the sum of its divisors less than n is n. The

first two perfect numbers are 6 and 28. Note that using σ(n), we observe that a

positive integer n is perfect if and only if

σ(n) = 2n

or if and only if

σ(n)− n = n.

The following theorem gives the characterization of even perfect numbers:
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theorem 2.2 Let n be a positive integer. An even integer N is perfect if and

only if N = 2k−1(2k − 1) where 2k − 1 is prime.

Proof

Let N = 2k−1(2k − 1) with 2k − 1 a prime. Since σ(n) is multiplicative,

σ(2k−1(2k − 1)) = σ(2k−1)σ(2k − 1) = (2k − 1)2k = 2N.

Hence N is perfect.

Conversely, if N is even and perfect. Write N = 2k−1m, k ≥ 2 and m odd.

Since σ(n) is multiplicative and (2k−1,m) = 1, we conclude that

σ(N) = σ(2k−1)σ(m) =
(
1 + 2 + · · ·+ 2k−1

)
σ(m) = (2k − 1)σ(m). (2.2)

But N is perfect and this implies that

σ(N) = 2N = 2km. (2.3)

From (2.2) and (2.3), we deduce that

(2k − 1)σ(m) = 2km.

Since (2k − 1, 2k) = 1, by Euclid’s Lemma, we deduce that

(2k − 1)|m. (2.4)

By (2.4), we may write

m = (2k − 1)s, (2.5)

with s ≥ 1. With this expression for m, we find using (2.2) and (2.3) that

σ(m) = 2ks. (2.6)

If s > 1 then (2.5) shows that 1, s and (2k − 1)s are all divisors of m. Hence,

σ(m) ≥ 1 + s+ (2k − 1)s > s+ (2k − 1)s = 2ks.

This contradicts (2.6). Therefore s = 1, m = 2k − 1 and σ(m) = 2k. But this

means that 1 and 2k − 1 are the only divisors of m and hence m = 2k − 1 must

be a prime.

2.4 The Möbius function

Let us now introduce one of the most important arithmetical functions, namely,

the Möbius function µ(n).
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definition 2.4 Let µ(1) = 1. If n = pα1
1 · · · p

αk
k , then define

µ(n) =

{
(−1)k if α1 = α2 = · · · = αk = 1,

0 otherwise.

The function µ(n) is known as the Möbius function.

definition 2.5 An arithmetical function f(n) is additive if for any positive

integers (m,n) = 1,

f(mn) = f(m) + f(n).

definition 2.6 The function ω(n) is defined by ω(1) = 0 and ω(n) is the

number of distinct prime divisors of n.

example 2.4 The function ω(n) is additive. For, if (m,n) = 1,

m =

k∏
i=1

pαii and n =

t∏
j=1

q
βj
j ,

then

ω(mn) = k + t = ω(m) + ω(n).

definition 2.7 Let m and n be positive integers. An arithmetical function

f(n) is completely additive if

f(mn) = f(m) + f(n).

definition 2.8 The function Ω(n) is defined by Ω(1) = 0 and Ω(n) is the

number of prime divisors of n.

example 2.5 The function Ω(n) is completely additive. This is because if

m =

k∏
i=1

pαii and n =

t∏
j=1

q
βj
j ,
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then

Ω(mn) = α1 + · · ·+ αk + β1 + · · ·+ βt = Ω(m) + Ω(n).

If n = pα1
1 · · · p

αk
k and αj = 1, 1 ≤ j ≤ k, we say that n is squarefree. Note

that in this case ω(n) = k. Therefore, we have for n = pα1
1 · · · p

αk
k ,

µ(n) =

{
(−1)ω(n) if n is squarefree,

0 otherwise.

We now show that µ(n) is multiplicative. If either m or n is not squarefree, then

µ(m)µ(n) = 0. Also, mn is not squarefree in this case and therefore µ(mn) = 0.

In other words,

µ(mn) = µ(m)µ(n).

If both m and n are squarefree and (m,n) = 1, then

µ(mn) = (−1)ω(mn) = (−1)ω(m)+ω(n) = µ(m)µ(n).

Therefore, µ(n) is multiplicative.

theorem 2.3 Let n be any positive integer and [x] denote the integer part of

a real number x. We have∑
`|n

µ(`) =

[
1

n

]
=

{
1 if n = 1,

0 if n > 1.

Proof

By Theorem 2.1, we know that g(n) =
∑
`|n

µ(`) is multiplicative. In other words,

g(1) = 1 and

g(
∏
p

pαp) =
∏
p

g(pαp).

But

g(pαp) = µ(1) + µ(p) + 0 + · · ·+ 0 = 1− 1 = 0.

In other words, if n 6= 1, then g(n) = 0.

definition 2.9 Let n be any positive integer. The arithmetical function I is

defined by

I(n) =

[
1

n

]
=

{
1 if n = 1

0 if n > 1
(2.7)
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Using the above notation, we have

I(n) =
∑
d|n

µ(d).

2.5 The Euler totient function

definition 2.10 The Euler totient ϕ(n) is defined to be the number of positive

integers not exceeding n which are relatively prime (see Definition 1.5) to n.

It is sometimes convenient to write ϕ(n) as

ϕ(n) =

n∑
k=1

(k,n)=1

1. (2.8)

theorem 2.4 Let n be any positive integer. Then

ϕ(n) =
∑
d|n

µ(d)
n

d
.

Proof

If g(k) is an arithmetical function, then

n∑
k=1

(k,n)=1

g(k) =

n∑
k=1

g(k)I((k, n)),

where I is given by (2.7). Setting g(k) = 1, we find that

ϕ(n) =

n∑
k=1

(k,n)=1

1 =

n∑
k=1

I((k, n)).

Now,

ϕ(n) =

n∑
k=1

I((k, n)) =

n∑
k=1

∑
`|(k,n)

µ(`) =

n∑
k=1

∑
`|k
`|n

µ(`)

=
∑
`|n

µ(`)

n/`∑
q=1

1 =
∑
`|n

µ(`)
n

`
.

This completes the proof of the theorem.
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Since µ(n)/n is multiplicative, we conclude from Theorem 2.1 that
∑
d|n

µ(d)/d

is multiplicative. This implies that ϕ(n)/n is multiplicative. Since N(n) = n is

multiplicative, we deduce that ϕ(n) is multiplicative and we state the result as

follow:

theorem 2.5 If m and n are positive integers such that (m,n) = 1, then

ϕ(mn) = ϕ(m)ϕ(n).

theorem 2.6 Let n be any positive integer with prime factorization

n =
k∏
j=1

p
αj
j .

Then

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Proof

We are now required to compute ϕ(pk) for any prime p. Note that for k ≥ 1,

ϕ(p) = pk
∑
d|pk

µ(d)

d
= pk

(
1

1
+
µ(p)

p

)
= pk − pk−1.

Remark 2.3 The values of ϕ(pα) can be computed directly. For α = 1, since p

is a prime, ϕ(p) = p− 1 since all integers less than p is relatively prime to p. For

α > 1, the integers less than pα that is NOT relatively prime to p are multiples

of p. There are pα−1 such integers. Therefore, there are pα − pα−1 integers less

that pα that are relatively prime to pα, or

ϕ(pα) = pα − pα−1.

2.6 Dirichlet product of arithmetical functions and multiplicative
functions
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definition 2.11 Let f and g be two arithmetical functions. We define the

Dirichlet product of f and g, denoted by f ∗ g, as

(f ∗ g)(n) =
∑
`|n

f(`)g
(n
`

)
.

We will often use f ∗ g to represent the function (f ∗ g)(n), suppressing the

argument n.

Using the above notation, Theorem 2.4 can simply be written as

ϕ = µ ∗N.

Our aim now is to show that the set of multiplicative functions, which we

denote as M, together with the operation ∗ forms an abelian group. We first

note that ∗ is a binary operation on M. The proof of this fact is similar to the

proof of Theorem 2.1.

theorem 2.7 The function I is the identity function for ∗, that is, I ∗ f =

f ∗ I = f for every arithmetical function f .

Proof

By the definition of I, we find that

(I ∗ f)(n) =
∑
`|n

I(`)f
(n
`

)
= f(n).

By the commutative law in Theorem 2.9, we conclude that

f ∗ I = f.

Remark 2.4 Theorem 2.7 holds for any arithmetical function, not just multi-

plicative function.

theorem 2.8 Let f and g be multiplicative functions. Then f ∗ g is multi-

plicative.

Proof

Let h = f ∗ g. Note that

h(1) = f(1)g(1) = 1.
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Next, consider the expression

h(mn) =
∑
c|mn

f(c)g
(mn
c

)
.

Given that (m,n) = 1, we can write c = ab, where a|m and b|n. Therefore, we

deduce that

h(mn) =
∑
a|m

∑
b|n

f(ab)g
(m
a

n

b

)
=
∑
a|m

∑
b|n

f(a)f(b)g
(m
a

)
g
(n
b

)
,

since (m/a, n/b) = 1 and both f and g are multiplicative. This implies that

h(mn) =
∑
a|m

f(a)g
(m
a

)∑
b|n

f(b)g
(n
b

)
= h(m)h(n).

The following result shows that ∗ is both a commutative and associative op-

eration on M.

theorem 2.9 The Dirichlet product is commutative and associative, that is,

for any arithmetical functions f, g, k, we have

f ∗ g = g ∗ f

and

(f ∗ g) ∗ k = f ∗ (g ∗ k).

Proof

The Dirichlet product of f and g is given by

(f ∗ g)(n) =
∑
`|n

f(`)g
(n
`

)
.

Let d1 = n/d be the conjugate divisor of d. As d runs through all divisors of n,

so does d1. By (2.1),

(f ∗ g)(n) =
∑
d1|n

f

(
n

d1

)
g(d1) = (g ∗ f)(n).



2.6 Dirichlet product 23

To prove the associativity property, let A = g ∗ k. Then

(f ∗A)(n) =
∑
a|n

f(a)A
(n
a

)
=
∑
a·d=n

f(a)
∑
b·c=d

g(b)k(c)

=
∑

a·b·c=n

f(a)g(b)k(c).

Similarly, if we set B = (f ∗ g), then

(B ∗ k)(n) =
∑
d·c=n

B(d)k(c)

=
∑
d·c=n

∑
a·b=d

f(a)g(b)k(c)

=
∑

a·b·c=n

f(a)g(b)k(c).

Therefore,

(f ∗ (g ∗ k))(n) = ((f ∗ g) ∗ k)(n).

theorem 2.10 (Möbius inversion formula) If f = g ∗ u, then g = f ∗ µ.

Conversely, g = f ∗ µ implies that f = g ∗ u.

Proof

Suppose f = g ∗ u. Then

f ∗ µ = (g ∗ u) ∗ µ = g ∗ (u ∗ µ) = g ∗ I = g.

Conversely, if g = f ∗ µ then

g ∗ u = (f ∗ µ) ∗ u = f ∗ (µ ∗ u) = f ∗ I = f.

We can now show the following identity that relates N(n) to ϕ(n).

theorem 2.11 Let n be any positive integer. Then∑
`|n

ϕ(`) = n.

Proof
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We have seen from Theorem 2.4 that

ϕ = µ ∗N.

By Möbius inversion formula, we conclude that

N = u ∗ ϕ.

We now show that for any arithmetical function f(n) such that f(1) 6= 0 (not

necessarily multiplicative), the inverse of f under ∗ exists.

theorem 2.12 Let f be an arithmetical function. If f(1) 6= 0, then there is a

unique function g such that

f ∗ g = I. (2.9)

Proof

We show by induction on m that (2.9) has a unique solution g(m). In order for

(2.9) to hold, the function g(n) must satisfy

f(1)g(1) = 1.

Since f(1) 6= 0, we find that

g(1) =
1

f(1)

and g(1) is uniquely determined. Suppose m > 1 and assume the values of g(k)

have been determined for 1 ≤ k ≤ m− 1. From (2.9), we find that

f(1)g(m) +
∑
`|m
`>1

f(`)g
(m
`

)
= 0.

Therefore,

g(m) =
1

f(1)

−∑
`|m
`>1

f(`)g
(m
`

)
and g(m) is uniquely determined. By mathematical induction, there is a unique

function g(n) such that

f ∗ g = I.
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Remark 2.5 Theorem 2.12 holds for any arithmetical function f with f(1) 6= 0,

not just multiplicative function.

definition 2.12 Given an arithmetical function f such that f(1) 6= 0. The

unique function g such that f ∗ g = I is called the Dirichlet inverse of f . The

notation for the Dirichlet inverse of f is f−1.

example 2.6 From Theorem 2.3 which can be expressed as I = u ∗ µ, we

conclude that the inverse of µ is u.

From the construction of f−1 in Theorem 2.12, it is not clear that the Dirichlet

inverse of a multiplicative function f is multiplicative. To complete the proof

that (M, ∗) forms an abelian group, it suffices to f−1 is multiplicative if f is

multiplicative.

theorem 2.13 If both g and f ∗g are multiplicative, then f is also multiplica-

tive.

Proof

We prove the theorem by contradiction. Suppose f is not multiplicative. Let

h = f ∗ g.

Since f is not multiplicative, there exist two relatively prime integers m and n

such that

f(mn) 6= f(m)f(n).

We choose mn as small as possible. If mn = 1, then

f(1) 6= f(1)f(1),

which implies that f(1) 6= 1. Since h(1) = f(1)g(1) = f(1) 6= 1, we conclude

that h is not multiplicative, which leads to a contradiction. Hence, mn 6= 1.

If mn > 1, then

f(ab) = f(a)f(b)

for all 1 ≤ ab < mn and (a, b) = 1.
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Now,

h(mn) =
∑
d|mn

f(d)g(mn/d) =
∑

m=am′

n=bn′

f(mn/(ab))g(ab)

= f(mn) +
∑

m=am′

n=bn′

ab6=1

f(mn/(ab))g(ab)

= f(mn) +
∑

m=am′

n=bn′

ab6=1

f(m/a)(n/b)g(a)g(b)

= f(mn) + h(m)h(n)− f(m)f(n).

Therefore f(mn) = f(m)f(n), which contradicts our assumption that f(mn) 6=
f(m)f(n).

theorem 2.14 If g is multiplicative, then the Dirichlet inverse g−1 is also

multiplicative.

Proof

The functions g and g ∗ g−1 = I are multiplicative. By Theorem 2.13, g−1 is

multiplicative.

example 2.7 1. If f is completely multiplicative then f−1 = µf. This can be

verified directly by show that µf ∗ f = I.

2. The functions σ−1 = µ ∗ µN and ϕ−1 = u ∗ µN. The first identity follows

from σ = N ∗u, which implies that σ−1 = N−1 ∗u−1 = µN ∗µ since u−1 = µ

and N−1 = µN (N being completely multiplicative).

2.7 Appendix

definition 2.13 Let f be an arithmetical function. The formal Dirichlet series

associated with f is the formal series

D(f ; s) =

∞∑
n=1

f(n)

ns
.

Note that if f and g are arithmetical functions, then

D(f + g; s) = D(f ; s) +D(g; s)
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and

D(f ; s)D(g; s) =

∞∑
`=1

f(`)

`s

∞∑
d=1

g(d)

ds
=

∞∑
n=1

∑
d|n f(n/d)g(d)

ns
= D(f ∗ g; s).

Now, by Fundamental Theorem of Arithmetic, we may write n = pα1
1 · · · p

αk
k .

If f is multiplicative, then the term
f(n)

ns
appears once in the expansion of the

formal product ∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)
.

Conversely, if D(f ; s) can be expressed above product, then

f(n) = f(pα1
1 ) · · · f(pαkk ).

This means that f(mn) = f(m)f(n) whenever (m,n) = 1. This implies that f

is multiplicative.

Therefore, f is multiplicative if and only if

D(f ; s) =
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)
.

We next show that if f is multiplicative, then f−1 is multiplicative. Note that

D(f ; s)D(f−1; s) = 1.

On the other hand,(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)(
1 +

f−1(p)

ps
+
f−1(p2)

p2s
+ · · ·

)
= 1

since ∑
d|pα

f(d)f−1(pα/d) = 0,

if α ≥ 1. This implies that

D(f ; s)D(f−1; s) = 1 =
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)(
1 +

f−1(p)

ps
+
f−1(p2)

p2s
+ · · ·

)

= D(f ; s)

(
1 +

f−1(p)

ps
+
f−1(p2)

p2s
+ · · ·

)
.

Hence,

D(f−1; s) =
∏
p

(
1 +

f−1(p)

ps
+
f−1(p2)

p2s
+ · · ·

)
,

and therefore, f−1 is multiplicative.



3 Averages of Arithmetical Functions

3.1 Introduction

Let x be a positive real number. We use the notation∑
n≤x

f(n)

to denote the sum

f(1) + f(2) + · · ·+ f([x]).

For positive real number x, the mean of the function f from 1 to x is defined

by

f(x) =
1

x

∑
n≤x

f(n)

The purpose of studying f(x) is because in general, f(x) behaves more regu-

larly than f([x]), especially when x is large. For example, when f is the charac-

teristic function for primes, namely,

f(n) =

{
1 if n is a prime

0 otherwise.

The function ∑
n≤x

f(n)

is usually written as π(x) and the Prime Number Theorem states that f(x) =

π(x)/x “behaves” like 1/lnx. On the other hand, we cannot predict the value of

f(n) for each n = [x] since we do not know the location of primes in Z.

We now introduce the “big-O” notation and the notion of asymptotic.

definition 3.1 Let a be any real number and let g(x) be a real-valued function

such that g(x) > 0 when x ≥ a. We write

f(x) = O(g(x))
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to mean that the quotient f(x)/g(x) is bounded for x ≥ a; that is, there exists

a constant M > 0 such that

|f(x)| ≤Mg(x) for all x ≥ a.

Sometimes, we will also use the notation

f(x)� g(x)

to represent f(x) = O(g(x)).

example 3.1 The function x2 = O(x3) when x is large. The function xn =

O(ex) for any positive integer n.

definition 3.2 If

lim
x→∞

f(x)

g(x)
= 1,

then we say that f(x) is asymptotic to g(x) as x→∞, and we write

f(x) ∼ g(x) as x→∞.

example 3.2 The Prime Number Theorem can be written as

π(x) ∼ x

ln(x)
.

3.2 Partial summation and the Euler-Maclaurin summation formula

theorem 3.1 Let a(n) be an arithmetic function and set

A(x) =
∑
n≤x

a(n).

Let 0 ≤ y < x be real numbers and f be a real-valued function with continuous

derivative on [y, x]. Then∑
y<n≤x

a(n)f(n) = f(x)A(x)− f(y)A(y)−
∫ x

y

A(t)f ′(t) d t. (3.1)
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Proof

We observe that∫ x

y

A(t)f ′(t) d t =

∫ x

y

∑
n≤t

a(n)f ′(t) d t (3.2)

=
∑
n≤x

a(n)

∫ x

max(y,n)

f ′(t) d t

=
∑
n≤x

a(n)[f(x)− f(max(y, n))].

Therefore,∫ x

y

A(t)f ′(t) d t = f(x)A(x)−
∑
n≤y

a(n)f(y)−
∑

y<n≤x

a(n)f(n)

= f(x)A(x)− f(y)A(y)−
∑

y<n≤x

a(n)f(n).

Simplifying, we find that∑
y<n≤x

a(n)f(n) = A(x)f(x)−A(y)f(y)−
∫ x

y

A(t)f ′(t) d t.

Remark 3.1 The second equality of (3.2) follows from interchanging the integral

with the summation. We now explain the limits in the integral using Figure 3.1.

Note that for a fixed t, the sum is over all n ≤ t (consider the vertical line). For

a fixed n, we integrate from y to x if n < y and from n to x if n ≥ y (consider

the two horizontal lines in the shaded region). Hence for a fixed n, we integrate

from max(n, y) to x.

x

t

n

y
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3.3 The Euler-Maclaurin summation formula (Special case)

In this section, we deduce the Euler-Maclaurin summation from Theorem 3.1.

theorem 3.2 (The Euler-Maclaurin summation formula) Let 0 < y < x and

let f(x) be a real-valued function with continuous derivative on [y, x]. Then∑
y<n≤x

f(n) =

∫ x

y

f(t) dt+

∫ x

y

{t}f ′(t) dt− f(x){x}+ f(y){y}. (3.3)

Proof

By partial summation formula with a(n) = 1 and A(x) = [x], we find that∑
y<n≤x

f(n) = f(x)[x]− f(y)[y]−
∫ x

y

[t]f ′(t) dt

= f(x)x− {x}f(x) + f(y){y} − f(y)y −
∫ x

y

(t− {t})f ′(t) dt

= −{x}f(x) + f(y){y}+

∫ x

y

{t}f ′(t) dt+ f(x)x− f(y)y −
∫ x

y

tf ′(t) dt

= −f(x){x}+ f(y){y}+

∫ x

y

{t}f ′(t) dt+

∫ x

y

f(t) dt.

3.4 Some elementary asymptotic formulas

definition 3.3 For each real number s > 1, we define the Riemann zeta

function as

ζ(s) =

∞∑
n=1

1

ns
.

definition 3.4 The Euler constant γ is defined as

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− lnn

)
.
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theorem 3.3 If x ≥ 1, then

(a)
∑
n≤x

1

n
= lnx+ γ +O

(
1

x

)
,

(b)
∑
n≤x

1

ns
=
x1−s

1− s
+ C(s) +O(x−s) if s > 0 and s 6= 1,

where

C(s) =


ζ(s) if s > 1,

lim
x→∞

∑
n≤x

1

ns
− x1−s

1− s

 if 0 < s < 1.

Proof

To prove (a), we first let f(t) = 1/t in Theorem 3.2. Then by (3.3),∑
n≤x

1

n
=

∫ x

1

dt

t
−
∫ x

1

{t}
t2

dt+ 1− {x}
x

= lnx−
∫ x

1

{t}
t2

dt+ 1 +O

(
1

x

)
= lnx+ 1−

∫ ∞
1

{t}
t2

dt+

∫ ∞
x

{t}
t2

dt+O

(
1

x

)
.

The improper integral ∫ ∞
1

{t}t−2 dt

exists since it is dominated by ∫ ∞
1

t−2 dt.

Furthermore,

0 ≤
∫ ∞
x

{t}
t2

dt ≤
∫ ∞
x

1

t2
dt =

1

x
,

so the last equation becomes∑
n≤x

1

n
= lnx+ 1−

∫ ∞
1

{t}
t2

dt+O

(
1

x

)
.

This proves (a) with

γ = 1−
∫ ∞

1

{t}
t2

dt = lim
x→∞

∑
n≤x

1

n
− lnx

 .
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To prove (b), we use the same argument with

f(x) = x−s,

where s > 0, s 6= 1. The Euler-Maclaurin summation implies that∑
n≤x

1

ns
=
x1−s

1− s
− 1

1− s
+ 1− s

∫ ∞
1

{t}
ts+1

dt+O(x−s).

Therefore, ∑
n≤x

1

ns
=
x1−s

1− s
+ C(s) +O(x−s), (3.4)

where

C(s) = 1− 1

1− s
− s

∫ ∞
1

{t}
ts+1

dt.

If s > 1 then the left-hand side of (3.4) approaches ζ(s) as x approaches ∞ and

both x1−s and x−s approach 0. Hence

C(s) = ζ(s)

if s > 1. If 0 < s < 1, then

lim
x→∞

1

xs
= 0

and (3.4) shows that

C(s) = lim
x→∞

∑
n≤x

1

ns
− x1−s

1− s


and this completes the proof of (b).

example 3.3 We now note that∑
n≤x

d(n) =
∑
d`≤x

1 =
∑
d≤x

∑
`≤x/d

1

=
∑
d≤x

[x
d

]
=
∑
d≤x

x

d
−
∑
d≤x

{x
d

}
= x(lnx+ C +O(1/x)) = x lnx+O(x).

In the above example, we find that∑
n≤x

u ∗ u(n) =
∑
d≤x

[x
d

]
.

In general, ∑
n≤x

u ∗ f(n) =
∑
d≤x

f(d)
[x
d

]
.
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The sum on the left hand side can also be written as∑
n≤x

u ∗ f(n) =
∑
`≤x

F (x/`)

where

F (x) =
∑
n≤x

f(n).

example 3.4 Note that

1 =
∑
n≤x

∑
d|n

µ(d) =
∑
d≤x

µ(d)
[x
d

]
= x

∑
d≤x

µ(d)

d
−
∑
d≤x

µ(d)
{x
d

}
.

Therefore,

x

∣∣∣∣∣∣
∑
d≤x

µ(d)

d

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣1 +

∑
d≤x

µ(d)
{x
d

}∣∣∣∣∣∣
1 +

∑
d≤x

{x
d

}
= 1 + {x}+ [x]− 1 = x.

Hence, ∣∣∣∣∣∣
∑
n≤x

µ(n)

n

∣∣∣∣∣∣ ≤ 1.

3.5 The divisor function and Dirichlet’s hyperbola method

In this section, we will first discuss the hyperbola method and then apply the

method to study the mean value of the divisor function d(n).

theorem 3.4 Let f and g be two arithmetic functions with

F (x) =
∑
n≤x

f(n), and G(x) =
∑
n≤x

g(n).

For 1 ≤ y ≤ x, we have∑
n≤x

(f ∗ g)(n) =
∑
n≤y

g(n)F
(x
n

)
+
∑
m≤xy

f(m)G
( x
m

)
− F

(
x

y

)
G(y).
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Proof

First, we observe that ∑
n≤x

(f ∗ g)(n) =
∑
md≤x

f(m)g(d).

Next, for y ≤ x, we find that∑
md≤x

f(m)g(d) =
∑
md≤x
d≤y

f(m)g(d) +
∑
md≤x
d>y

f(m)g(d)

=
∑
d≤y

g(d)F
(x
d

)
+
∑
m≤xy

f(m)
{
G
( x
m

)
−G(y)

}
.

We now set f = g = u. Then

f ∗ g = u ∗ u = d.

Note that F (x) = [x] = G(x). Let y =
√
x. Then by Theorem 3.4,∑

n≤x

d(n) = 2
∑
n≤
√
x

[x
n

]
− [
√
x]2

= 2x
∑
n≤
√
x

1

n
− x+O(

√
x).

Using Theorem 3.3 (a), we conclude that

theorem 3.5 For all x ≥ 1,∑
n≤x

d(n) = x lnx+ (2γ − 1)x+O(
√
x),

where γ is the Euler’s constant.

As a corollary, we deduce that

d(x) ∼ lnx. (3.5)

In other words, the average order of d(n) is lnn.

Remark 3.2 The error term in Theorem 3.5 can be improved. In 1903 Voronoi

proved that it is O(x1/3 log x). In 1928, J.G. van der Corput improved the error

term to O(x27/82) using the method of exponential sums. In 1988, H. Iwaniec and

C.J. Mozzochi showed that the error term can be taken as O(x7/22). The best

possible error term is one given recently by M.N. Huxley in 2003, who showed

that the error is O(x131/416(lnx)26947/8320).
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3.6 An application of the hyperbola method

An interesting question one can ask is:

“If two positive integers are randomly chosen, what is the probability that

they are relatively prime?”

To answer this question, we first show the following result:

theorem 3.6 Let ϕ(n) be the Euler ϕ function. For x > 1,∑
n≤x

ϕ(n) = x2 3

π2
+O(x3/2).

Remark 3.3 The above result shows that the average order of ϕ(n) is 3n/π2.

Proof

We recall that ϕ = µ∗N . Applying Theorem 3.4 with f = N and g = µ, we find

that∑
n≤x

ϕ(n)=
∑
n≤x

µ ∗N(n)=
∑
n≤y

µ(n)F
(x
n

)
+
∑
m≤ xy

N(m)G
( x
m

)
− F

(
x

y

)
G(y),

where

F (x) =
∑
n≤x

N(n) =
x2

2
+O(x)

and

G(x) =
∑
n≤x

µ(n) = O(x).

Therefore,

∑
n≤x

ϕ(n) =
1

2

∑
n≤y

µ(n)
(x
n

)2

+O

∣∣∣∣∣∣
∑
n≤y

µ(n)

∣∣∣∣∣∣x


+O

∑
m≤ xy

m
x

m

+O

((
x

y

)2

y

)
.

Let y =
√
x and we conclude that∑

n≤x

ϕ(n) =
∑
n≤
√
x

µ(n)

n2

x2

2
+O(x3/2). (3.6)
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We will show in the chapter on Dirichlet series that

ζ(2)

∞∑
n=1

µ(n)

n2
= 1.

This implies that
∞∑
n=1

µ(n)

n2
=

6

π2
,

since

ζ(2) =
π2

6
.

Given the above identity, we find that

∑
n≤
√
x

µ(n)

n2
=

∞∑
n=1

µ(n)

n2
−
∑
n>
√
x

µ(n)

n2

=

∞∑
n=1

µ(n)

n2
+O

 ∑
n>
√
x

1

n2


=

6

π2
+O(x−1/2).

Substituting the above into (3.6), we conclude the proof of the theorem.

Now, let T be a positive integer and

S = {(m,n)|1 ≤ m ≤ T, 1 ≤ n ≤ T}.

Then the total number of elements in S such that (m,n) = 1 is given by∑
n≤T

∑
m≤T

(m,n)=1

1 = 1 + 2
∑
m≤T

∑
n<m

(m,n)=1

1

= 1 + 2
∑
m≤T

ϕ(m) =
6

π2
T 2 +O(T 3/2).

This shows that the probability that two randomly chosen positive integers are

relatively prime is

lim
T→∞

|S|
T 2

= 6/π2.

3.7 Some facts about Riemann-Stieltjes integrals

In this section, we give another proof of Theorem 3.2. Our main reference of

this section is Mathematical Analysis (second edition) by T.M. Apostol (will be

referred to as [MA-Apostol]).
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definition 3.5 If [a, b] is a compact interval, a set of points

P = {a = x0, x1, x2, · · · , xn−1, xn = b}

satisfying the inequalities

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

is called a partition of [a, b]. The collection of all possible partitions of [a, b] will

be denoted by P[a, b].

definition 3.6 Let f be defined on [a, b] and let P = {a =

x0, x1, x2, · · · , xn−1, xn = b} be a partition of [a, b]. If there exists a positive

number M such that
n∑
k=1

|f(xk)− f(xk−1)| ≤M

for all partitions P ∈ P[a, b], then f is said to be of bounded variation on [a, b].

definition 3.7 A partition P ′ is said to be finer than P if P ⊂ P ′.

definition 3.8 Let P = {a = x0, x1, x2, · · · , xn−1, xn = b} be a partition of

[a, b] and let tk be a point in the subinterval [xk−1, xk]. A sum of the form

S(P, f, α) =
n∑
k=1

f(tk)(α(xk)− α(xk−1))

is called a Riemann-Stieltjes sum of f with respect to α. We say that f is

Riemann-integrable with respect to α on [a, b], and we write “f ∈ R(α) on [a, b]”

if there exists a number A having the property : For every ε > 0, there exists a

partition Pε of [a, b] such that for every partition P finer than Pε and for every

choice of the points tk ∈ [xk−1, xk], we have

|S(P, f, α)−A| < ε.

The number A, if exists, is called the Riemann-Stieltjes integral of f with respect

to α on [a, b]. The number A is denoted by∫ b

a

fdα or

∫ b

a

f(t)dα(t).

We have the following facts:
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theorem 3.7 If f is continuous on [a, b] and if α is of bounded variation on

[a, b], then f ∈ R(α) on [a, b].

theorem 3.8 If f ∈ R(α) on [a, b], then α ∈ R(f) on [a, b] and we have∫ b

a

f(x)dα(x) +

∫ b

a

α(x)df(x) = f(b)α(b)− f(a)α(a).

For the proofs of Theorems 3.7 and 3.8, see [MA-Apostol, p.159, Theorem

7.27] and [MA-Apostol, p.144, Theorem 7.6] respectively.

We now give another proof of Theorem 3.1.

Second proof of Theorem 3.1

Note that if P is chosen so that [xk−1, xk] contains just one integral point, then

S(P, f, α) =

n∑
k=1

f(tk)(A(xk)−A(xk−1))

= f(s[y+1])a([y + 1]) + · · ·+ f(s[x])a([x]),

where sj = tk for some k for which [xk−1, xk] contains the integer j. Note that

as the length of each interval of the partition P tends to 0, tk → j. Hence, we

conclude that ∫ x

y

f(t)dA(t) =
∑

y<n≤x

f(n)a(n). (3.7)

By Theorem 3.8, we find that∫ x

y

f(t)dA(t) +

∫ x

y

A(t)df(t) = f(x)A(x)− f(y)A(y)

and this is precisely Theorem 3.1 by (3.7).

Remark 3.4 Let y = 1 in Theorem 3.1. We find that∑
1<n≤x

a(n)f(n) = A(x)f(x)−A(1)f(1)−
∫ x

1

A(t)f ′(t) dt.

But ∑
1<n≤x

a(n)f(n) +A(1)f(1) =
∑

1<n≤x

a(n)f(n) + a(1)f(1)

=
∑
n≤x

a(n)f(n).
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Consequently, we have∑
n≤x

a(n)f(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t) dt. (3.8)



4 Elementary Results on the
Distribution of Primes

4.1 Introduction

We first recall the definition of π(x):

definition 4.1 For real number x > 0, let π(x) denote the number of primes

not exceeding x.

The behavior of π(x) as the function of x has been studied by many math-

ematicians ever since the eighteenth century. Inspection of tables of primes led

C.F. Gauss (1792) and A.M. Legendre (1798) to conjecture that

π(x) ∼ x

lnx
. (4.1)

This conjecture was first proved independently by J. Hadamard and de la Vallée

Poussin in 1896 and is known now as the Prime Number Theorem. We record

the theorem as follows:

theorem 4.1 (Prime Number Theorem) Let x be a real positive number and

π(x) be the number of primes less than x. Then

π(x) ∼ x

lnx
.

Proofs of the Prime Number Theorem are often classified as elementary or

analytic. The proofs of J. Hadamard and de la Vallee Poussin are analytic, using

complex function theory and properties of the Riemann zeta function ζ(s) (see

Definition 3.3 for the definition of ζ(s) when s ∈ R and s > 1). Elementary

proofs were discovered around 1949 by A. Selberg and P. Erdös. Their proofs do

not involve ζ(s) and complex function theory, hence the name “elementary”.

There are other elementary proofs of the prime number theorem since the ap-

pearance of the work of Selberg and Erdös, one of which is due to A. Hildebrand.

The proof given by Hildebrand relies on proving an equivalent statement of the

Prime Number Theorem and the mean value of µ(n). In this chapter, we derive



42 Elementary Results on the Distribution of Primes

some basic properties of π(x) and establish several statements equivalent to the

Prime Number Theorem.

4.2 The function ψ(x)

We recall the definition of Mangoldt’s function

definition 4.2 Let n be a positive integer and let

Λ(n) =

{
ln p, if n is a prime power

0, otherwise.

example 4.1 We observe that if n =
∏k
j=1 p

αj
j then

∑
d|n

Λ(n) =

k∑
j=1

αj ln pj = lnn.

Also, ∑
n≤x

Λ
[x
n

]
=
∑
n≤x

Λ ∗ u(n)

=
∑
n≤x

lnn = x lnx− x+O(lnx). (4.2)

definition 4.3 For real number x ≥ 1,

ψ(x) =
∑
n≤x

Λ(n) =
∑
pm≤x

ln p.

theorem 4.2 There exist positive constants c1 and c2 such that

c1x ≤ ψ(x) ≤ c2x.

Proof

For x ≥ 4, let

S =
∑
n≤x

lnn− 2
∑
n≤ x2

lnn.
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By Theorem 3.2 with f(n) = lnn, we find that∑
n≤x

lnn =

∫ x

1

ln tdt+

∫ x

1

{t}1

t
dt− {x} lnx+ {y} ln y

= x lnx− x+O(lnx). (4.3)

This implies that

S = x ln 2 +O(lnx).

Therefore, there exists an x0 ≥ 4 such that

x

2
≤ S ≤ x (4.4)

whenever x ≥ x0 ≥ 4. Next, since

lnn =
∑
d|n

Λ(d),

we find that

S =
∑
n≤x

∑
d|n

Λ(d)− 2
∑
n≤ x2

∑
d|n

Λ(d)

=
∑
d≤x

Λ(d)
[x
d

]
− 2

∑
d≤ x2

Λ(d)
[ x

2d

]
=
∑
d≤ x2

Λ(d)
{[x
d

]
− 2

[ x
2d

]}
+

∑
x
2<d≤x

Λ(d)
[x
d

]
.

Hence,

S =
∑
d≤ x2

Λ(d)θd +
∑

x
2<d≤x

Λ(d)
[x
d

]
,

where

θd =
[x
d

]
− 2

[ x
2d

]
. (4.5)

Now, for
x

2
< d ≤ x,

we have [x
d

]
= 1.

Therefore, we may simplify the second term on the right-hand side of (4.5) to

obtain

S =
∑
d≤ x2

Λ(d)θd +
∑

x
2<d≤x

Λ(d). (4.6)

We now observe that θd = 0 or 1 since

[y]− 2[y/2] = 0 or 1.
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Using (4.6), we deduce that

S ≤
∑
d≤ x2

Λ(d) +
∑

x
2<d≤x

Λ(d) =
∑
d≤x

Λ(d) = ψ(x) (4.7)

and

S ≥
∑

x
2<d≤x

Λ(d) = ψ(x)− ψ
(x

2

)
. (4.8)

From (4.4) and (4.7),

ψ(x) ≥ S ≥ x

2
(x ≥ x0).

Therefore,

ψ(x) ≥ c1x.

To obtain a lower bound for ψ(x), we first deduce from (4.4), (4.8) that

ψ(x)− ψ
(x

2

)
≤ S ≤ x.

Therefore,

ψ(x) ≤ x+ ψ
(x

2

)
, x ≥ x0

≤ x+
x

2
+ ψ

(x
4

)
, x ≥ 2x0

...

≤ x+
x

2
+ · · ·+ x

2k
+ ψ

( x

2k+1

)
,

x

2k+1
< x0 ≤

x

2k
.

This implies that

ψ(x) ≤ 2x+ ψ(x0) ≤ c2x

for some positive real number c2.

4.3 The functions θ(x) and π(x)

definition 4.4 For real number x ≥ 1, let

θ(x) =
∑
p≤x

ln p.

theorem 4.3 For real number x ≥ 1, we have

θ(x) = ψ(x) +O(
√
x).
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Proof

We first note that the difference of ψ(x) and θ(x) is

ψ(x)− θ(x) =
∑
pm≤x
m≥2

ln p

=
∑
p≤
√
x

m=2

ln p+
∑

p≤x1/3

ln p
∑

3≤m≤ ln x
ln p

1.

Hence,

ψ(x)− θ(x) ≤ ψ(
√
x) +

∑
p≤x1/3

ln p
lnx

ln p

�
√
x+ x1/3 lnx�

√
x,

where f(x) � g(x) is another notation for f(x) = O(g(x)) (see Definition 3.1).

Using Theorems 4.2 and 4.3, we deduce the following corollary.

corollary 4.4 For x ≥ 4, there exist real positive constants c1 and c2 such

that

c1x ≤ θ(x) ≤ c2x.

We give a relation between θ(x) and π(x), where π(x) is given by Definition

4.1.

theorem 4.5 For each positive real x ≥ 4,

c1x

lnx
≤ π(x) ≤ c2x

lnx
.

Proof

It suffices to prove that

π(x) =
1

lnx
θ(x) +O

(
x

ln2 x

)
by Theorem 4.3. We observe that

π(x)− θ(x)

lnx
=
∑
p≤x

(
1− ln p

lnx

)

=
∑
p≤x

ln p

(
1

ln p
− 1

lnx

)
. (4.9)
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If

a(n) =

{
ln p if n is a prime p,

0 otherwise,

then by Corollary 4.4,

A(t) =
∑
n≤t

a(n) = θ(t)� t.

The last expression in (4.9) is

θ(x)

(
1

lnx
− 1

lnx

)
−
∫ x

2

θ(t)

(
1

ln t
− 1

lnx

)′
dt

=

∫ x

2

θ(t)

t ln2 t
dt�

∫ x

2

dt

ln2 t

=

∫ √x
2

dt

ln2 t
+

∫ x

√
x

dt

ln2 t

�
√
x+

∫ x

√
x

dt

ln2 x
� x

ln2 x
.

As corollaries of Theorems 4.3 and 4.5, we have the following results. We leave

the details of the proofs of these corollaries to the readers.

corollary 4.6 The Prime Number Theorem

π(x) ∼ x

lnx

is equivalent to each of the following relations:

(a) θ(x) ∼ x, and

(b) ψ(x) ∼ x.

4.4 Second proof of Chebyshev’s estimate

In this section, we give another proof of Theorem 4.5 that is due to M. Nair (see

Amer. Math. Monthly, 89, no.2, 126-129). Our presentation is a modification of

Tenenbaum’s Section 1.2.

The upper bound in Theorem 4.5 can already be found in Erdös’ proof of

Bertrand’s postulate, a result that states that for any positive integer n ≥ 2,

there exists at least a prime p between n and 2n. It is given as follows:
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lemma 4.7 For n ≥ 2, ∏
p≤n

p < 4n.

Proof

Let P (n) denote the statement. It is clear that P (2) and P (3) are true. If m > 1,

then ∏
p≤2m+2

p =
∏

p≤2m+1

p ≤ 42m+1 < 42m+2.

Therefore,

P (2m+ 1) implies P (2m+ 2).

Suppose n = 2m + 1. Then each prime in the interval [m + 2, 2m + 1] is a

factor of

(
2m+ 1

m

)
. This is because primes in the interval do not occur in the

denominator of

(
2m+ 1

m

)
(which is m!(m+ 1)!).

Since P (m+ 1) holds, we find that∏
p≤2m+1

p =
∏

m+2≤p≤2m+1

p
∏

p≤m+1

p ≤
(

2m+ 1

m

)
4m+1.

But,

(1 + 1)2m+1 =

(
2m+ 1

0

)
+

(
2m+ 1

1

)
+ · · ·+

(
2m+ 1

m

)
+

(
2m+ 1

m+ 1

)
+ · · ·+

(
2m+ 1

2m+ 1

)
≥ 2

(
2m+ 1

m

)
.

Therefore, (
2m+ 1

m

)
< 4m.

Hence, ∏
p≤2m+1

p ≤ 4m · 4m+1 = 42m+1

and P (2m+ 1) is true.

Now, let t be an expression in terms of n which will be chosen later. from

Lemma 4.7,

tπ(n)−π(t) <
∏

t<p≤n

p ≤ 4n.
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This yields

π(n) ≤ n ln 4

ln t
+ π(t) ≤ n ln 4

ln t
+ t.

Choosing t =
√
n, we conclude that

π(n) ≤ D n

lnn

for some positive constant D. This gives the upper bound of Theorem 4.5.

The lower bound is harder to prove and the brilliant proof is due to Nair.

Let dn = [1, 2, 3, · · · , n], i.e., dn is the lowest common multiple of the integers

from 1 to n. Note that if j =
∏
p

pαj,p , then

dn =
∏
p

pmax(α1,p,α2,p,··· ,αn,p).

This means that if pνp‖dn then pνp = pαkp,p for some kp and therefore,

pνp ≤ kp

for some kp between 1 and n. In other words,

dn =
∏
p

pmax(α1,p,α2,p,··· ,αn,p) ≤
∏
p≤n

kp ≤
∏
p≤n

n = nπ(n). (4.10)

We claim that

lemma 4.8 For n ≥ 7,

dn ≥ 2n.

Assuming that Lemma 4.8 is true, then from (4.10), we deduce that

π(n) ≥ ln dn
lnn

≥ ln 2
n

lnn
,

which gives the lower bound for Theorem 4.5.

It remains to prove Lemma 4.8.

Proof

We first recall that the beta integral implies that

I(m,n) =

∫ 1

0

xm−1(1− x)n−m =
(m− 1)!(n−m)!

n!
=

1

m

(
n

m

) . (4.11)
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Next, note that

I(m,n) =

n−m∑
j=0

(−1)j
(
n−m
j

)∫ 1

0

xm+j−1dx

=

n−m∑
j=0

(−1)j
(
n−m
j

)
1

m+ j
∈ 1

dn
Z.

Therefore, from (4.11), we deduce that

m

(
n

m

)
| dn. (4.12)

If we replace n by 2n and m by n in (4.12), we deduce that

n

(
2n

n

)
| d2n. (4.13)

Similarly, if we replace n by 2n+ 1 and m by n+ 1 in (4.12), we deduce that

(n+ 1)

(
2n+ 1

n+ 1

)
| d2n+1. (4.14)

Using the identity

(n+ 1)

(
2n+ 1

n+ 1

)
= (2n+ 1)

(
2n

n

)
,

we deduce from (4.14) that

(2n+ 1)

(
2n

n

)
| d2n+1. (4.15)

Now,

d2n|d2n+1

and therefore, (4.13) implies that

n

(
2n

n

)
| d2n+1. (4.16)

Since (n, 2n+ 1) = 1, we conclude from (4.15) and (4.16) that

n(2n+ 1)

(
2n

n

)
|d2n+1.

Now,

d2n+1 ≥ n(2n+ 1)

(
2n

n

)
≥ n(1 + 1)2n = n22n ≥ 22n+1

if n ≥ 2. Also,

d2n+2 ≥ d2n+1 ≥ 22n+2
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for n ≥ 4. Therefore,

dn ≥ 2n

if n ≥ 10. The inequality for dn for the remaining cases for 7 ≤ n ≤ 9 can be

checked directly.

4.5 Merten’s estimates

In this section, we show that there are infinitely many primes by showing that∑
p≤x

1

p
diverges.

theorem 4.9 (Merten’s estimates) Let x be a positive real number greater

than 1. We have

(a)
∑
n≤x

Λ(n)

n
= lnx+O(1),

(b)
∑
p≤x

ln p

p
= lnx+O(1),

(c)
∑
p≤x

1

p
= ln lnx+A+O

(
1

lnx

)
, and

(d) (Merten’s Theorem)
∏
p≤x

(
1− 1

p

)
=
e−A

lnx

(
1 +O

(
1

lnx

))
,

where A is a constant.

Proof

(a) First, using (4.2), we write

∑
n≤x

Λ(n)

n
=
∑
n≤x

{
Λ(n)

1

x

([x
n

]
+O(1)

)}

=
1

x

∑
n≤x

Λ(n)
[x
n

]
+O

 1

x

∑
n≤x

Λ(n)

 .

Now, ∑
n≤x

Λ(n)
[x
n

]
=
∑
n≤x

(Λ ∗ u)(n).
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Hence, we deduce that∑
n≤x

Λ(n)

n
=

1

x

∑
n≤x

(Λ ∗ u)(n) +O(1)

=
1

x

∑
n≤x

lnn+O(1),

= lnx+O(1).

(b) We observe that

0 ≤
∑
n≤x

Λ(n)

n
−
∑
p≤x

ln p

p
=
∑
p≤
√
x

ln p
∑

2≤m≤ ln x
ln p

1

pm

�
∑
p≤
√
x

ln p

p2
� 1.

Hence, ∑
p≤x

ln p

p
= lnx+O(1).

(c) Let

A(x) =
∑
n≤x

a(n)

where

a(n) =


ln p

p
, if p is prime

0, otherwise.

Then, we find that ∑
p≤x

1

p
=
∑
p≤x

(
ln p

p

)(
1

ln p

)

= A(x)
1

lnx
−
∫ x

2

A(t)

(
1

ln t

)′
dt

=
A(x)

lnx
+

∫ x

2

A(t)

t ln2 t
dt. (4.17)

By Theorem 4.9 (b), we find that

A(t) = ln t+R(t),

with

R(t)� 1, t ≥ 2. (4.18)



52 Elementary Results on the Distribution of Primes

Using (4.18) in the last term of (4.17), we deduce that∫ x

2

ln t+R(t)

t ln2 t
dt =

∫ x

2

dt

t ln t
+

∫ x

2

R(t)

t ln2 t
dt

= ln lnx− ln ln 2 +

∫ ∞
2

R(t)

t ln2 t
dt−

∫ ∞
x

R(t)

t ln2 t
dt

= ln lnx− ln ln 2 +A′′ +O

(
1

lnx

)
. (4.19)

Substituting (4.19) into (4.17), we conclude our proof of (c).

(d) We observe that

ln
∏
p≤x

(
1− 1

p

)
=
∑
p≤x

ln

(
1− 1

p

)

=
∑
p≤x

(
−1

p
+ rp

)
,

where

rp = ln

(
1− 1

p

)
+

1

p
.

Hence,

ln
∏
p≤x

(
1− 1

p

)
=
∑
p≤x

rp −
∑
p≤x

1

p

= − ln lnx+A+O

(
1

lnx

)
+
∑
p

rp −
∑
p>x

rp. (4.20)

Now,

rp = −
∞∑
m=2

1

mpm
= O

(
1

p2

)
, (4.21)

since for m ≥ 1 and p ≥ 2,

mpm ≥ 2m.

Using (4.21) in (4.20), we deduce that

ln
∏
p≤x

(
1− 1

p

)
= − ln lnx+A′ +O

(
1

lnx

)
+O

(∑
p>x

1

p2

)

= − ln lnx+A′ +O

(
1

lnx

)
+O

(
1

x− 1

)
= − ln lnx+A′ +O

(
1

lnx

)
.

Hence,

ln
∏
p≤x

(
1− 1

p

)
= − ln lnx+A′ +O

(
1

lnx

)
. (4.22)
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Exponentiating both sides of (4.22), we arrive at∏
p≤x

(
1− 1

p

)
= exp

(
− ln lnx+A′ +O

(
1

lnx

))

=
eA
′

lnx
exp

(
O

(
1

lnx

))
=
eA
′

lnx

(
1 +O

(
1

lnx

))
,

since et = 1 +O(t).

example 4.2 Find an asymptotic formula for∑
n≤x

ω(n),

where ω(n) is the number of distinct prime divisors of n.

Solution

Rewrite the sum as ∑
n≤x

ω(n) =
∑
n≤x

∑
p|n

1

=
∑
p≤x

∑
`≤x/p

1 =
∑
p≤x

[
x

p

]
=
∑
p≤x

x

p
+O(

∑
p≤x

1)

= x ln lnx+Ax+O(x/ lnx),

where we have used (c) and Chebyshev’s estimate π(x) = O(x/ lnx).

4.6 Bertrand’s postulate (Erdös’ proof)

In this section, we will use the properties of the functions θ(x) and ψ(x) to give

a proof of the well-known Bertrand’s Postulate.

theorem 4.10 (Bertrand’s Postulate) Let n be an integer. Then for n ≥ 2,

there exists a prime p between n and 2n.

We will need several elementary lemmas.
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lemma 4.11 Let r(p) satisfies

pr(p) ≤ 2n < pr(p)+1. (4.23)

Then (
2n

n

)
|
∏
p≤2n

pr(p).

Proof

The number of integers less than n and divisible by m is
[ n
m

]
. Therefore, the

number of integers from 1 to n that is exactly a multiple of pj is[
n

pj

]
−
[

n

pj+1

]
.

Hence, the exponent of p in n! is([
n

p

]
−
[
n

p2

])
+ 2

([
n

p2

]
−
[
n

p3

])
+ · · ·+ (k − 1)

([
n

pk−1

]
−
[
n

pk

])
+

[
n

pk

]
=

[
n

p

]
+

[
n

p2

]
+ · · ·+

[
n

pk

]
,

where k is such that

pk ≤ n < pk+1.

Therefore the exponent of p is

(
2n

n

)
is

r(p)∑
j=1

{[
2n

pj

]
− 2

[
n

pj

]}
≤

r(p)∑
j=1

1 = r(p).

Hence, (
2n

n

)
|
∏
p≤2n

pr(p).

lemma 4.12 If p > 2 and

2n

3
< p ≤ n,

then

p -
(

2n

n

)
.
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Proof

If p satisfies

2n

3
< p ≤ n,

then p occurs once in the factorization of n!. This is because if 2p ≤ n, then

p ≤ n

2
<

2n

3
< p,

which is a contradiction to our assumption. Now p occurs twice in (2n)! because

3p > 2n. Therefore,

p -
(

2n

n

)
.

Erdös’ proof of Bertrand’s postulate

We are now ready to prove Bertrand’s postulate.

Suppose that Bertrand’s postulate is false. Then there exists a positive integer

n > 1 such that there is no prime p in the interval [n, 2n). By Lemma 4.12, all

prime factors of (
2n

n

)
must satisfy p ≤ 2n/3. Let s(p) be the largest prime power of p that divides(

2n

n

)
. By Lemma 4.11,

∏
p≤2n/3

ps(p) =

(
2n

n

)
|
∏
p≤2n

pr(p).

Therefore, s(p) ≤ r(p) and

ps(p) ≤ pr(p) ≤ 2n (4.24)

by (4.23). If s(p) > 1, then ps(p) ≥ p2 and thus,

p <
√

2n

since ps(p) < 2n. In other words, no more than [
√

2n] primes occur in

(
2n

n

)
with

exponent larger than 1. Now,(
2n

n

)
=

∏
p≤2n/3

ps(p) =
∏

p≤2n/3
s(p)>1

ps(p)
∏

p≤2n/3
s(p)=1

ps(p)

≤
∏

p<
√

2n

ps(p)
∏

p≤2n/3

p

< (2n)[
√

2n]4[2n/3],
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by (4.24) and Lemma 4.7.

Next, since

(1 + 1)2n =

(
2n

0

)
+ · · ·+

(
2n

n

)
+ · · ·+

(
2n

2n

)
< (2n+ 1)

(
2n

n

)
,

we conclude that

4n

2n+ 1
≤
(

2n

n

)
≤ ((2n)

√
2n42n/3,

which implies that

4n/3 ≤ (2n+ 1)
√

2n+1.

Therefore,

n
ln 4

3
< (
√

2n+ 1) ln(2n+ 1).

The above inequality is true for only small values of n, for example, n < 469.

This implies that for n ≥ 750, Bertrand’s postulate is true. For n < 750, we

verify directly that Bertrand’s postulate is true by observing that 3 is a prime

between 2 and 4, 5 is a prime between 3 and 6, 7 is a prime between 5 and 10,

13 is a prime between 7 and 14, 23 is a prime between 13 and 26, 43 is a prime

between 23 and 46, 83 is a prime between 43 and 85, 163 is a prime between 83

and 166, 317 is a prime between 163 and 326, 631 is a prime between 317 and

634.

4.7 The Bertrand Postulate (Ramanujan’s proof)

In this section, we present Ramanujan’s proof of Bertrand’s Postulate.

Ramanujan’s proof was mentioned in an interesting article by P. Erdös titled

“Ramanujan and I”. Erdös’ proof of Theorem 4.10 was published around 1932

and it was Kalmar who asked Erdös to look up on Ramanujan’s proof and that

was the first time Erdös heard about Ramanujan.

By definitions of ψ(x) and θ(x), we observe that

lemma 4.13 For each positive real number x,

ψ(x) = θ(x) + θ(
√
x) + θ( 3

√
x) + · · · . (4.25)

Next, we will show that
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lemma 4.14

ln([x]!) = ψ(x) + ψ
(x

2

)
+ ψ

(x
3

)
+ · · · . (4.26)

Proof

The function

ψ(x) =
∑
n≤x

Λ(n),

where Λ(n) is the von Mangoldt function.Hence

∞∑
k=1

ψ
(x
k

)
=

∞∑
k=1

∑
n≤ xk

Λ(n) =
∑
kn≤x
k≥1

Λ(n)

=
∑
n≤x

∑
k≤ xn

Λ(n) =
∑
n≤x

[x
n

]
Λ(n)

=
∑
n≤x

∑
d|n

Λ(d) = ln[x]!,

where we have used properties of Λ(n) for the last equality.

We will now establish a few equalities and inequalities.

lemma 4.15 For positive real number x, we have

ψ(x)− 2ψ(
√
x) = θ(x)− θ(

√
x) + θ( 3

√
x)− · · · , (4.27)

ln[x]!− 2 ln[x/2]! = ψ(x)− ψ
(x

2

)
+ ψ

(x
3

)
− · · · , (4.28)

ψ(x)− 2ψ
(√
x
)
≤ θ(x) ≤ ψ(x) (4.29)

and

ψ(x)− ψ
(x

2

)
≤ ln[x]!− 2 ln[x/2]!

≤ ψ(x)− ψ
(x

2

)
+ ψ

(x
3

)
. (4.30)

Proof of (4.27)

This follows directly from (4.25). More precisely,

ψ(x)− 2ψ(
√
x) =

∞∑
k=1

θ
(
k
√
x
)
− 2

∞∑
k=1

θ
(

2k
√
x
)
.
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Proof of (4.28)

This follows from (4.26), namely,

ln[x]!− 2 ln[x/2]! =

∞∑
k=1

ψ
(x
k

)
− 2

∞∑
k=1

ψ
( x

2k

)
.

Proof of (4.29)

Note that θ(x) is increasing. Hence, from (4.27),

ψ(x)− 2ψ(
√
x) ≤ θ(x).

Also, from (4.25),

ψ(x) ≥ θ(x).

Proof of (4.30)

This follows immediately from (4.28).

lemma 4.16 Let x be a real number. Then

ln[x]!− 2 ln[x/2]! >
2

3
x if x > 750, (4.31)

ln[x]!− 2 ln[x/2]! <
3

4
x if x > 3, (4.32)

ψ(x)− ψ(
(x

2

)
+ ψ

(x
3

)
>

2

3
x if x > 750, (4.33)

and

ψ(x)− ψ
(x

2

)
<

3

4
x if x > 3. (4.34)

Proof of (4.31)

For real number z, the Gamma function Γ(z) is given by

Γ(z) = lim
n→∞

(n− 1)!nz

z(z + 1) · · · (z + n− 1)
.

The function Γ(x) satisfies the well-known Stirling’s formula 1

ln Γ(x) = ln
√

2π +

(
x− 1

2

)
lnx− x+

ϑx
12x

, 0 < ϑx < 1. (4.35)

1 See p. 24 of E. Artin’s “The Gamma function”.
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A real-valued function F (x) defined on an open interval a < x < b is called

convex if for every y ∈ (a, b),

G(x, y) =
F (x)− F (y)

x− y

is a monotonically increasing function of x. It is known that ln Γ(x) is convex.

The convexity of ln Γ(x) implies that 2

(ln Γ(x))′′ ≥ 0,

which leads to

Γ′′(x)Γ(x) ≥ 0.

Since Γ(x) is positive for x > 0 (see the definition of Γ(x), we deduce that

Γ′′(x) ≥ 0.

Observe now that Γ(3) > Γ(2) and thus, by mean value theorem, there is a

c ∈ [2, 3] such that Γ′(c) > 0. Since Γ′′(x) ≥ 0 for x > 0, we deduce that

Γ′(x) > 0 for all x ≥ c. In other words, Γ(x) is increasing for x > 3 > c and we

conclude that

ln[x]!− 2 ln[x/2]! ≥ ln Γ(x)− 2 ln Γ

(
1

2
x+ 1

)
.

To prove (4.31), it suffices to show that for x > 750,

ln Γ(x)− 2 ln Γ

(
1

2
x+ 1

)
>

2x

3
. (4.36)

By (4.35), we deduce that

ln Γ(x)− 2 ln Γ

(
1

2
x+ 1

)
= ln

√
2π +

(
x− 1

2

)
lnx− x+

ϑ1

12x
− 2 ln

√
2π

− 2

(
x

2
+

1

2

)
ln
(x

2
+ 1
)

+ 2
(x

2
+ 1
)
− ϑ2

3x+ 6
, (4.37)

where both ϑ1, ϑ2 belong to the interval (0, 1). Since

2 +
ϑ1

12x
− ϑ2

3x+ 6
≥ 1,

we find from (4.37) that

ln Γ(x)− 2 ln Γ
(x

2
+ 1
)
> − ln

√
2π + 1 + x ln

(
2x

2 + x

)
− 1

2
lnx− ln

(
1 +

x

2

)
.

2 See p. 4 of E. Artin’s “The Gamma Function”.
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Using the fact that − ln
√

2π + 1 > 0, −1/2 > −1 and that for x > 2,

− ln
(
x
(

1 +
x

2

))
> − lnx2,

we find that

ln Γ(x)− 2 ln Γ
(x

2
+ 1
)
> x ln

(
2x

x+ 2

)
− 2 lnx.

It suffices to show that for x > 750,

x ln

(
2x

x+ 2

)
− 2 lnx >

2x

3
.

But if we let

f(x) = ln 2x− ln(x+ 2)− 2
lnx

x
,

then

f ′(x) =
1

x
− 1

x+ 2
− 2

x2
+ 2

lnx

x2
.

But
1

x
− 1

x+ 2
> 0

and

2
lnx

x2
− 2

x2
> 0

if x > 3. Hence if x > 3, then f ′(x) > 0. Therefore, f(x) is increasing. In other

words, if x > 750, then

f(x) > f(750) = 0.672 · · · > 2

3
,

and the proof of (4.36) is complete.

Proof of (4.32)

The proof is similar to that for (4.31). We use the inequality

ln[x]!− 2 ln[x/2]! ≤ ln Γ(x+ 1)− 2 ln Γ

(
1

2
x+

1

2

)
and Stirling’s formula to conclude that (why?)

ln[x]!− 2 ln[x/2]! ≤ 3

4
x

for all x > 3.

Proof of (4.33) and (4.34)

These two inequalities follow immediately from (4.30)-(4.32).
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lemma 4.17 For each positive real number x, we have

ψ(x) <
3

2
x if x > 3 (4.38)

ψ(x)− ψ
(x

2

)
+ ψ

(x
3

)
≤ θ(x) + 2ψ(

√
x)− θ

(x
2

)
+ ψ

(x
3

)
< θ(x)− θ

(x
2

)
+
x

2
+ 3
√
x . (4.39)

Proof of (4.38)

To prove (4.38), we use (4.34) repeatedly, with x replaced by x/2, x/4, · · · and

add up the results. We find that

ψ(x) ≤ 3

4
x

(
1 +

1

2
+ · · ·

)
<

3

2
x.

Proof of (4.39).

From (4.29), we find that

ψ(x)− 2ψ(
√
x) ≤ θ(x).

Hence

ψ(x) ≤ θ(x) + 2ψ(
√
x).

Next, from (4.29),

θ(x/2) ≤ ψ(x/2).

Using the above inequalities, we deduce that

ψ(x)− ψ(x/2) + ψ(x/3) ≤ θ(x) + 2ψ(
√
x)− θ(x/2) + ψ(x/3).

For the second inequality, we use (4.38) to deduce that

2ψ(
√
x) + ψ(x/3) ≤ 3

√
x+ x/2.

We are now ready to prove Bertrand’s Postulate. By (4.33),

ψ(x)− ψ(x/2) + ψ(x/3) ≥ 2

3
x

for x > 750. Hence we deduce from (4.39) that

θ(x)− θ(x/2) ≥ 2x/3− x/2− 3
√
x > 0

whenever x > 750. This implies that for n > 375, there is a prime between n

and 2n.

We are now left with verifying that Bertrand’s Postulate is true for 2 ≤ n ≤
375. This is straightforward and we leave it as an exercise.



5 The Prime Number Theorem

5.1 The Prime Number Theorem

In Chapter 4, Corollary 4.6, we proved that the Prime Number Theorem is

equivalent to the statement

ψ(x) ∼ x. (5.1)

In this chapter, we will prove the following theorem.

theorem 5.1 For positive real number x, we have

ψ(x) = x+O
(
x exp(−c 10

√
lnx)

)
,

where c > 0 is some constant independent of x.

We note that (5.1) follows immediately from Theorem 5.1.

Theorem 5.1, which was mentioned on page 169 of Gérald Tenenbaum’s book

“Introduction to Analytic and Probabilistic Number Theory”, is weaker than the

result obtained independently by J. Hadamard and de la Valleé Poussin, which

states that

ψ(x) = x+O
(
x exp(−c

√
lnx)

)
.

But the treatment here (adapted from A. Hildebrand’s 1991 “Analytic Number

Theory” notes ) allows us to appreciate the analytic method used in the proofs

of the Prime Number Theorem with less technicalities.

5.2 The Riemann zeta function

In Chapter 3, Definition 3.3, we have encountered the Riemann zeta function

for real s > 1. We now give the definition of the function when s is a complex

number.
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definition 5.1 Let s = σ + it ∈ C and σ > 1. Define

ζ(s) =

∞∑
n=1

1

ns
.

theorem 5.2 The Riemann zeta function ζ(s) is an analytic function for

σ > 1.

Proof

Note that if σ ≥ 1 + δ, then

M∑
n=m

∣∣∣∣ 1

ns

∣∣∣∣ ≤ M∑
n=m

1

nσ
≤

M∑
n=m

1

n1+δ
.

Now, for every ε > 0, there exists Nε > 0 such that

M∑
n=m

1

n1+δ
< ε

for M > m > Nε. Hence, we conclude that

M∑
n=m

∣∣∣∣ 1

ns

∣∣∣∣ < ε

for M > m > Nε. Therefore, by the Weierstrass M -test, the series

∞∑
n=1

1

ns

is absolutely and uniformly convergent in any region σ ≥ 1 + δ, with δ > 0. The

Riemann zeta function ζ(s) is therefore an analytic function in σ > 1.

5.3 Euler’s product and the product representation of ζ(s)

theorem 5.3 For σ > 1,

ζ(s) =
∏
p

(
1− 1

ps

)−1

.
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The above follows immediately from the next theorem.

definition 5.2 An infinite product

∞∏
n=1

(1 + an)

is said to be absolutely convergent if

∞∑
n=1

ln(1 + an)

is absolutely convergent.

theorem 5.4 Let f be a multiplicative arithmetical function such that the

series
∞∑
n=1

f(n)

is absolutely convergent. Then the sum of the series can be expressed as an

absolutely convergent infinite product, namely,

∞∑
n=1

f(n) =
∏
p

(1 + f(p) + f(p2) + · · · ), (5.2)

extended over all primes.

The product above is called the Euler product of the series.

Proof

Consider the finite product

P (x) =
∏
p≤x

(1 + f(p) + f(p2) + · · · )

extended over all primes p ≤ x. Since this is a product of a finite number of

absolutely convergent series we can multiply the series and rearrange the terms

without altering the sum. A typical term is of the form∏
p

f(pα) = f

(∏
p

pα

)
,

since f is multiplicative. By the fundamental theorem of arithmetic we can write

P (x) =
∑
n∈A

f(n)
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where A consists of those n having all their prime factors less than or equal to

x. Therefore,
∞∑
n=1

f(n)− P (x) =
∑
n∈B

f(n),

where B is the set of n having at least one prime factor greater than x. Therefore,∣∣∣∣∣
∞∑
n=1

f(n)− P (x)

∣∣∣∣∣ ≤∑
n∈B
|f(n)| ≤

∑
n>x

|f(n)|.

Since
∞∑
n=1

|f(n)|

is convergent,

lim
x→∞

∑
n>x

|f(n)| = 0.

Hence,

lim
x→∞

P (x) =

∞∑
n=1

f(n).

We have proved that the infinite product is convergent. We now establish the

absolute convergence of the infinite product. A necessary and sufficient condition

for the absolute convergence of the product∏
n

(1 + an)

is the convergence of the series ∑
n

|an|.

In this case, we have∑
p≤x

|f(p) + f(p2) + f(p3) + · · · | ≤
∑
p≤x

(|f(p)|+ |f(p2)|+ · · · ) ≤
∞∑
n=2

|f(n)|.

Since the partial sums are bounded, the series of positive terms∑
p≤x

|f(p) + f(p2) + f(p3) + · · · |

converges, and this implies absolute convergence of the product (5.2).

Applying Theorem 5.4 with

f(n) =
1

ns
,

we obtain Theorem 5.3.
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5.4 Analytic continuation of ζ(s) to σ > 0

theorem 5.5 The Riemann zeta function ζ(s) can be extended to a function

that is analytic in σ > 0, except at s = 1, where it has a simple pole with residue

1.

Proof

Recall from Theorem 3.2 that∑
n≤x

f(n) = f(1) +

∫ x

1

f(t)dt+

∫ x

1

f ′(t){t}dt− {x}f(x).

With s real,

x = N ∈ N and f(n) =
1

ns
,

we have
N∑
n=1

1

ns
= 1 +

∫ N

1

dη

ηs
−
∫ N

1

s{η}
ηs+1

dη.

By analytic continuation, the above identity is also valid for complex numbers

s = σ + it with σ > 1.

Now, assume σ > 1. Then

lim
N→∞

N∑
n=1

1

ns
= ζ(s),

lim
N→∞

∫ N

1

dη

ηs
=

∫ ∞
1

dη

ηs
=

1

s− 1

and

lim
N→∞

∫ N

1

{η}
ηs+1

dη =

∫ ∞
1

{η}
ηs+1

dη =: Φ(s).

Therefore,

ζ(s) = 1 +
1

s− 1
− sΦ(s), σ > 1.

But, Φ(s) is analytic for σ > 0. Define, for σ > 0, the extension of ζ(s) by

1 +
1

s− 1
− sΦ(s).

Note that this function has a pole at s = 1.
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x

y

Figure 5.1 The shaded regions indicate the regions for which (5.4) and (5.5) hold.

To continue ζ(s) to σ > −1, we write

Φ(s) =

∫ ∞
1

{η} − 1/2

ηs+1
dη +

1

2s
.

This yields

ζ(s) =
s

s− 1
− s

∫ ∞
1

{η} − 1/2

ηs+1
dη − 1

2
.

Incidently, this implies that ζ(0) = −1/2.

5.5 Upper bounds for |ζ(s)| and |ζ ′(s)| near σ = 1

theorem 5.6 Let A be a positive real number. If

|t| ≥ 2 and σ ≥ max

(
1

2
, 1− A

ln |t|

)
, (5.3)

then there are positive constants M and M ′ (depending on A) such that

|ζ(s)| ≤M ln |t| (5.4)

|ζ ′(s)| ≤M ′ ln2 |t|. (5.5)

Proof
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We recall that

N∑
n=1

1

ns
= 1 +

∫ N

1

dx

xs
− s

∫ N

1

{x}
xs+1

dx

= 1 +
N1−s − 1

1− s
− sΦ(s) + s

∫ ∞
N

{x}
xs+1

dx

= ζ(s) +
N1−s

1− s
+ s

∫ ∞
N

{x}
xs+1

dx.

The above identity holds for σ > 0, where now,

ζ(s) = 1 +
1

s− 1
− sΦ(s), σ > 0,

with

Φ(s) =

∫ ∞
1

{η}
ηs+1

dη.

Now,

|ζ(s)| ≤
N∑
n=1

1

nσ
+
N1−σ

|1− s|
+ |s|

∫ ∞
N

dx

xσ+1

≤
N∑
n=1

1

nσ
+
N1−σ

|t|
+
|s|
σNσ

.

Assume that s is in the region specified by (5.3) and let N = [|t|]. Then

N1−σ ≤ exp

{
A lnN

ln |t|

}
≤ exp(A).

This implies that

|ζ(s)| ≤
∑
n≤|t|

1

nσ
+
eA

|t|
+
|s|
σN

eA

≤
∑
n≤|t|

1

nσ
+
eA

2
+

(σ + |t|)eA

σ(|t|/2)

≤
∑
n≤|t|

1

nσ
+ eA

(
1

2
+

2

|t|
+

2

σ

)
. (5.6)

Since σ > 1/2 and |t| ≥ 2, we find that

1

2
+

2

|t|
+

2

σ
< 6.

This shows that (5.6) may be written as

|ζ(s)| ≤
∑
n≤|t|

1

nσ
+ 6eA . (5.7)
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For σ ≥ 1, ∑
n≤|t|

1

nσ
≤
∑
n≤|t|

1

n
= ln |t|+O(1). (5.8)

For

max

(
1

2
, 1− A

ln |t|

)
< σ < 1,

and n ≤ N , we find that

1

nσ
≤ 1

n
n1−σ ≤ 1

n
N1−σ ≤ eA

n
.

Hence, ∑
n≤|t|

1

nσ
≤ eA

∑
n≤|t|

1

n
= eA (ln |t|+ u(t)) , (5.9)

where u(t) = O(1).

Combining (5.8) and (5.9), we conclude that if s is in the region specified by

(5.3), then

|ζ(s)| ≤M ln |t|,

where M is a positive constant depending on A. This proves (5.4).

We now prove (5.5). Differentiating the expression

ζ(s) =
∑
n≤N

1

ns
− N1−s

1− s
− s

∫ ∞
N

{t}
ts+1

dt,

we deduce that

|ζ ′(s)| ≤
∑
n≤N

lnn

nσ
+
N1−σ lnN

|1− s|
+

N1−σ

|1− s|2
+

∫ ∞
N

1

tσ+1
dt+ |s|

∫ ∞
N

ln t

tσ+1
dt

Let N = [|t|], then from the above inequality, we find that

|ζ ′(s)| ≤ ln[|t|]
∑
n≤[|t|]

1

nσ
+
eA ln |t|
|1− s|

+
eA

|1− s|2
+

1

σ|t|σ
+ (σ + |t|)

∫ ∞
N

ln t

tσ+1

≤ ln2 |t|+ C ln |t|+ eA
(

ln |t|
|t|

+
1

|t|2

)
+
|t|1−σ

σ|t|
+ (σ + |t|)

(
ln |t|
σ[|t|]σ

+
1

σ2[|t|]σ

)
,

which leads to

|ζ ′(s)| ≤M ′ ln2 |t|,

after similar estimates as in the first case.
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5.6 The non-vanishing of ζ(1 + it)

theorem 5.7 For real number t 6= 0,

ζ(1 + it) 6= 0.

We first prove several simple lemmas.

lemma 5.8 For all θ ∈ R,

3 + 4 cos θ + cos 2θ ≥ 0.

Proof

The inequality follows immediately from the following computations:

3 + 4 cos θ + 2 cos2 θ − 1 = 2 cos2 θ + 4 cos θ + 2

= 2(cos2 θ + 2 cos θ + 1)

= 2(cos θ + 1)2 ≥ 0.

lemma 5.9 For σ > 1,

ζ(s) = eG(s),

where

G(s) =
∑
p

∞∑
m=1

1

mpms
.

Proof

Using the Euler product representation of ζ(s), we find that

ζ(s) =
∏
p

(
1− 1

ps

)−1

= exp

(
−
∑
p

ln

(
1− 1

ps

))

= exp

(∑
p

∞∑
m=1

1

mpsm

)
= exp(G(s)).
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lemma 5.10 For σ > 1, and all t ∈ R,

|ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1.

Proof

By Lemma 5.9, we have for σ > 1,

ζ(s) = exp

(∑
p

∞∑
m=1

1

mpms

)

= exp

(∑
p

∞∑
m=1

1

m
exp {−(ln p)ms}

)

= exp

(∑
p

∞∑
m=1

1

m
exp {−mσ ln p− itm ln p}

)
,

since s = σ + it. Hence,

ζ(s) = exp

(∑
p

∞∑
m=1

1

m

1

pσm
{cos(tm ln p)− i sin(tm ln p)}

)
.

Therefore,

|ζ(s)| = exp

(∑
p

∞∑
m=1

1

m

1

pσm
cos(tm ln p)

)
.

This implies that

|ζ(σ))|3|ζ(σ + it)|4|ζ(σ + 2it)|

= exp

(∑
p

∞∑
m=1

1

mpσm
(3 + 4 cos(tm ln p) + cos(2tm ln p))

)
≥ exp(0) = 1.

Proof of Theorem 5.7.

Suppose ζ(1 + it0) = 0 for some t0 6= 0. By Lemma 5.10, we deduce that for

σ > 1,

|ζ(σ)(σ − 1)|3
∣∣∣∣ζ(σ + it0)

σ − 1

∣∣∣∣4 |ζ(σ + 2it0)||σ − 1| ≥ 1 (5.10)

Now, since ζ(σ) has a simple pole with residue 1 at σ = 1, we find that
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lim
σ→1+

ζ(σ)(σ − 1) = 1. (5.11)

Next,

ζ(σ + it0) = ζ(1 + it0) + (σ − 1)ζ ′(1 + it0) +O((σ − 1)2).

This implies that

lim
σ→1+

ζ(σ + it0)

σ − 1
= ζ ′(1 + it0). (5.12)

It is clear that

ζ(σ + 2it0)→ ζ(1 + 2it0). (5.13)

Combining (5.11)–(5.13), we find that when σ approaches 1 from the right, 0 ≥ 1,

which is clearly impossible. Hence, we conclude that

ζ(1 + it) 6= 0

for all nonzero real t.

5.7 A lower bound for |ζ(s)| near σ = 1

theorem 5.11 For |t| ≥ 2, there exist positive constants c and d such that for

σ > 1− c

(ln |t|)9
,

we have

|ζ(σ + it)| ≥ d

(ln |t|)7
.

Proof

For σ ≥ 2,

|ζ(s)| =

∣∣∣∣∣
∞∑
n=1

1

ns

∣∣∣∣∣ ≥ 1−

∣∣∣∣∣
∞∑
n=2

1

ns

∣∣∣∣∣
≥ 1−

∞∑
n=2

1

n2
= 2− π2

6
>

1

4
.

Therefore, for σ ≥ 2,

|ζ(s)| ≥ d

(ln |t|)7
,

provided that

d ≤ ln7(2)

4
and |t| ≥ 2. (5.14)
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For δ > 0, let

1 +
δ

(ln |t|)9
≤ σ ≤ 2, |t| ≥ 2.

By Lemma 5.10, we find that

|ζ(σ + it)| ≥ 1

|ζ(σ)|3/4|ζ(σ + 2it)|1/4
.

Now, if σ ≤ 2,

ζ(σ) =

∞∑
n=1

1

nσ
≤ 1 +

∫ ∞
1

1

xσ
dx = 1 +

1

σ − 1

≤ 2

σ − 1

≤ 2

δ
(ln |t|)9, (5.15)

since

σ ≥ 1 +
δ

(ln |t|)9
.

Suppose

δ <
ln9 2

2
. (5.16)

Then for |t| > 2, we have

1

ln |t|
<

1

ln 2

and therefore,

δ

ln9 |t|
≤ 1

2

ln9 2

ln8 |t| ln |t|
<

1

2

ln 2

ln |t|
.

In other words, if δ satisfies (5.16) and

σ > 1− δ

ln9 |t|
,

we must have

σ > 1− 1

2

ln 2

ln |t|
. (5.17)

By Theorem 5.6 with A = 1
2 ln 2, we can find a constant M > 0 1

2 ln 2, such

that

|ζ(σ + 2it)| ≤ 2M ln |t|. (5.18)
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Hence, by (5.18) and (5.15), we conclude that

|ζ(σ + it)| ≥
(

δ

2 ln9 |t|

)3/4(
1

2M ln |t|

)1/4

=
δ3/4

2M1/4 ln7 |t|
≥ d

ln7 |t|
,

for

d ≤ δ3/4

2M1/4
. (5.19)

Next, consider

1− δ

ln9 |t|
≤ σ ≤ 1 +

δ

ln9 |t|
, |t| ≥ 2. (5.20)

If

σ0 = 1 +
δ

ln9 |t|
,

then we observe from (5.20) that

|σ − σ0| ≤
2δ

ln9 |t|
. (5.21)

We next show that ζ(σ + it) is close to ζ(σ0 + it).

|ζ(σ + it)− ζ(σ0 + it)| =
∣∣∣∣∫ σ0

σ

ζ ′(u+ it)du

∣∣∣∣
≤ |σ − σ0| max

σ≤u≤σ0

|ζ ′(u+ it)|.

Now, by Theorem 5.6, there exists an M ′ > 0 such that

|ζ ′(u+ it)| ≤M ′ ln2 |t|,

for

|u| ≥ σ ≥ 1− 1

2

ln 2

ln |t|
and |t| ≥ 2.

Therefore,

|ζ(σ + it)− ζ(σ0 + it)| ≤ 2δ

ln7 |t|
M ′,

where we have used (5.21) in the final inequality. M ′ is independent of δ provided

δ

ln9 |t|
≤ 1

2

ln 2

ln |t|
, |t| ≥ 2.

This will be satisfied if

δ ≤ 1

2
ln9 2.
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Hence,

|ζ(σ + it)| ≥ |ζ(σ0 + it)| − |ζ(σ + it)− ζ(σ0 + it)|

≥ δ3/4

2M1/4 ln7 |t|
− 2δ

ln7 |t|
M ′

=
δ3/4

ln7 |t|

(
1

2M1/4
− 2δ1/4M ′

)
.

We now choose a real positive number δ = δ1 be such that(
1

2M1/4
− 2δ

1/4
1 M ′

)
> 0.

Now, letting

0 < c < min

(
1

2
ln9(2), δ1

)
and

0 < d < min

(
δ

3/4
1

(
1

2M1/4
− 2δ

1/4
1 M ′

)
,

ln7(2)

4
,
δ

3/4
1

2M1/4

)
,

we conclude that for |t| ≥ 2 and σ > 1− c

ln9 |t|
,

|ζ(σ + it)| ≥ d

ln7 |t|
.

5.8 Perron’s Formula

theorem 5.12 Let x be a half integer. Then for any b ∈ [1, 3] and any T ≥ 1,

ψ(x) =
1

2πi

∫ b+iT

b−iT

(
−ζ
′

ζ
(s)

xs

s

)
ds+O

(
xb

T (b− 1)
+ x

ln2 x

T

)
.

We first begin with several lemmas.

lemma 5.13 For σ > 1,

∞∑
n=1

Λ(n)

ns
= −ζ

′

ζ
(s).
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Proof

The proof is immediate using the formula

Λ = µ ∗ ln

and the fact that

∞∑
n=1

f ∗ g(n)

ns
=

∞∑
n=1

f(n)

ns

∞∑
n=1

g(n)

ns
.

lemma 5.14 For σ > 1, ∣∣∣∣ζ ′ζ (s)

∣∣∣∣� 1

σ − 1
+ 1.

Proof

For σ > 1, ∣∣∣∣ζ ′ζ (s)

∣∣∣∣ ≤ ∞∑
n=1

Λ(n)

nσ
= σ

∫ ∞
1

∑
n≤t

Λ(n)
dη

ησ+1

≤ σ
∫ ∞

1

cη

ησ+1
dη, by Theorem 4.2,

= c
σ

σ − 1
� 1 +

1

σ − 1
.

lemma 5.15 For b > 0, T ≥ 1, and y > 0, y 6= 1, we have

1

2πi

∫ b+iT

b−iT

ys

s
ds =


1 +O

(
yb

T | ln y|

)
if y > 1

O

(
yb

T | ln y|

)
if 0 < y < 1

Proof

We will only prove the result when y > 1. By the Residue Theorem,

1

2πi

∫ b+iT

b−iT

ys

s
ds =

1

2πi

∫
Γ0

ys

s
ds = 1 +

3∑
j=1

1

2πi

∫
Γj

ys

s
ds.
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Thus, it suffices to show that with −a large enough,∣∣∣∣∣
∫

Γj

ys

s
ds

∣∣∣∣∣� yb

T | ln y|
,

with j = 1, 2, 3.

On Γ2, ∣∣∣∣yss
∣∣∣∣ =

ya

|s|
≤ ya,

if a ≤ −1. This implies that ∣∣∣∣∫
Γ2

ys

s
ds

∣∣∣∣ ≤ ya2T.

Letting a approaches −∞, we conclude that the above integral is 0.

On Γ1 and Γ3, ∣∣∣∣yss
∣∣∣∣ =

yσ

|s|
≤ yσ

T
,

since

|s| > |T |.

Hence, for j = 1 or 3,∣∣∣∣∣
∫

Γj

ys

s
ds

∣∣∣∣∣ ≤
∫ b

a

yσ

T
dσ ≤ 1

T

∫ b

−∞
eσ ln ydσ � yb

T | ln y|
.

For the case 0 < y < 1, we will leave it as exercise for the reader.

Proof of Theorem 5.12.

Let

I =
1

2πi

∫ b+iT

b−iT

(
−ζ
′

ζ
(s)

)
xs

s
ds. (5.22)

By Lemmas 5.13 and 5.15, we find that

I =
1

2πi

∫ b+iT

b−iT

∞∑
n=1

Λ(n)

ns
xs

s
ds

=

∞∑
n=1

Λ(n)
1

2πi

∫ b+iT

b−iT

(
x
n

)s
s

ds

=
∑
n≤x

Λ(n) +

∞∑
n=1

Λ(n)O

( (
x
n

)b
T | ln x

n |

)
,

= ψ(x) +O

(
xb

T

∞∑
n=1

Λ(n)

nb| ln x
n |

)
.
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Let

R =

∞∑
n=1

Λ(n)

nb| ln x
n |
.

Then

R =
∑

x
2≤n≤2x

Λ(n)

nb| ln x
n |

+
∑

n 6∈[ x2 ,2x]

Λ(n)

nb| ln x
n |

= R1 +R2.

Note that if n > 2x or n < x/2 then | ln(x/n)| ≥ ln 2. Furthermore, since

1 < b ≤ 3, by Lemmas 5.13 and 5.14,

R2 ≤
1

ln 2

∞∑
n=1

Λ(n)

nb
� 1 +

1

b− 1
≤ 1

b− 1
+

2

3− 1
� 1

b− 1
.

Now, if

−1

2
≤ t < 1,

then

| ln(1 + t)| ≥ |t|
2

and we deduce that∣∣∣∣ ln xn
∣∣∣∣ =

∣∣∣∣ ln nx
∣∣∣∣ =

∣∣∣∣ ln(1 +
n− x
x

) ∣∣∣∣� ∣∣∣∣n− xx
∣∣∣∣ . (5.23)

Furthermore, since

Λ(n) ≤ lnx (5.24)

and

1

nb
≤ 2b

xb
(5.25)

for x/2 < n. Using (5.23)–(5.25), with the observations that

2b ≤ 23 and |n| ≤ |x|,

we find that

R1 =
∑

x
2≤n≤2x

Λ(n)

nb| ln x
n |
� lnx

xb

∑
x
2≤n≤2x

∣∣∣∣ x

x− n

∣∣∣∣ . (5.26)

Since x is a half integer, the denominator in the sum∑
x
2≤n≤2x

∣∣∣∣ x

x− n

∣∣∣∣
is nonzero and we find that ∑

x
2≤n≤2x

∣∣∣∣ x

x− n

∣∣∣∣� x lnx. (5.27)
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Substituting (5.27) into (5.26), we conclude that

R1 �
ln2 x

xb
x.

Hence, the error term for I, given by (5.22), is

O

(
xb

T (b− 1)
+ x

ln2 x

T

)
.

5.9 Completion of the proof of the Prime Number Theorem

In this section, we can finally complete the proof of the prime number theorem.

Proof

Step 1.

Application of Perron’s Formula:

Let

T ≥ 1, x = N +
1

2
≥ 2 and b = 1 +

1

lnx
.

Then

ψ(x) =
1

2πi

∫ b+iT

b−iT

(
−ζ
′

ζ
(s)

)
xs

s
ds+O

(
x ln2 x

T

)
.

Step 2.

Shifting of path of integration:

Choose a sufficiently close to 1 so that

ζ(s) 6= 0

for all σ ≥ a, |t| ≤ T . We note that the integrand

−ζ
′

ζ
(s)

xs

s

is analytic in the region enclosed by the old and new paths with an exception of

a pole at s = 1, with residue x. By the Residue Theorem,

1

2πi

∫ b+iT

b−iT

(
−ζ
′

ζ
(s)

)
xs

s
ds = x+

3∑
j=1

1

2πi

∫
Γj

(
−ζ
′

ζ
(s)

)
xs

s
ds.

Step 3.
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Estimation of

∫
Γj

(
−ζ
′

ζ
(s)

)
xs

s
ds:

Let

B = max
s∈Γ1,Γ2,Γ3

∣∣∣∣ζ ′ζ (s)

∣∣∣∣ .
The number B depends on T and will be estimated in Step 4.

Now, for T ≥ 2, ∣∣∣∣∫
Γ2

(
−ζ
′

ζ
(s)

)
xs

s
ds

∣∣∣∣ ≤ xaB ∫ a+iT

a−iT

|ds|
|s|

= 2xaB

∫ T

0

dt

|a+ it|
� Bxa lnT. (5.28)

The last inequality follows from the fact that for T ≥ 2,∫ T

0

dt

|a+ it|
≤
∫ T

1

dt

t
+

∫ 1

0

dt

a
≤ lnT + 2� lnT.

We will now estimate the integral on Γ3. The estimate of the integral on Γ1 is

similar. Since

b = 1 +
1

lnx
,

we find that ∣∣∣∣∫
Γ3

(
−ζ
′

ζ
(s)

)
xs

s
ds

∣∣∣∣ ≤ B

T

∫ b

a

xσdσ

� Bxb

T
� Bx

T
. (5.29)

We therefore conclude from (5.28) and (5.29) that

ψ(x) = x+O

(
Bx

T

)
+O(Bxa lnT ) +O

(
x ln2 x

T

)
.

We note that the above holds for T ≥ 2 and a suitable choice of a.

Step 4.

Choice of a and estimation of B:

For |t| ≤ 2, we note that ζ(s) 6= 0 for s = 1 + it. Therefore, there exists a δ > 0

such that for |t| ≤ 2 and σ > 1− δ,

ζ ′(s)

ζ(s)
− 1

σ − 1

is analytic and bounded there. This implies that∣∣∣∣ζ ′ζ (s)

∣∣∣∣� 1

1− σ
� ln9 T (5.30)
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if σ = 1− A

ln9 T
.

Suppose 2 ≤ |t| ≤ T . Then by Theorems 5.6 and 5.7, there exist c and d such

that

|ζ(s)| ≥ d

ln7 |t|
and |ζ ′(s)| � ln2 |t|

in the region

σ ≥ 1− c

ln9 |t|
.

Note that we must choose c so that

c < δ ln9 2. (5.31)

The additional condition imposed on c is necessary for the validity of (5.30).

Next, with 2 ≤ |t| ≤ T , and

a = 1− c

ln9 |T |
,

we conclude that ∣∣∣∣ζ ′ζ (s)

∣∣∣∣� ln9 T.

Together with (5.30), we find that

B = max
s∈Γ1,Γ2,Γ3

∣∣∣∣ζ ′ζ (s)

∣∣∣∣� ln9 T.

Therefore,

ψ(x) = x+O

(
x

ln9 T

T

)
+O

(
x ln2 x

T

)
+O

(
x ln10 T exp

(
−c lnx

ln9 T

))
.

Now the first two error terms can be bounded by

O

(
x

ln10 x

T

)
.

Hence

ψ(x) = x+O

(
x

ln10 x

T

)
+O

(
x ln10 T exp

(
−c lnx

ln9 T

))
.

Step 5.

Choice of T :

Assume 2 ≤ T ≤ x. The expression in the error term is minimal if

1

T
= exp

{
−c lnx

ln9 T

}
.
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Therefore,

T = exp{c1/10
3 ln1/10 x}.

With the choice of T , we have for sufficiently large x ≥ x0, 2 ≤ T ≤ x,

ψ(x) = x+O

(
x

ln10 x

exp(c1/10 ln1/10 x)

)
.

Since for any ε > 0,

ln10 x� exp
(
ε ln1/10 x

)
,

we conclude that

ψ(x) = x+O(x exp(−c′ ln1/10 x))

with a suitable choice of c′ > 0. For 2 ≤ x ≤ x0, we have

ψ(x) = x+O(x exp(−c′ ln1/10 x)).

This completes the proof of the Prime Number Theorem.

5.10 Prime Number Theorem without error term

In this section, we present J. Korevaar’s proof of the Prime Number Theorem.

His proof is a modification of D.J. Newman’s proof. The section is adapted from

Chapter 7 of “Complex Analysis” by R.B. Ash and W.P. Novinger.

theorem 5.16 (Auxiliary Tauberian Theorem) Let F be bounded and piece-

wise continuous on [0,∞) so that

G(z) =

∫ ∞
0

F (t)e−zt dt

exists and is analytic on Re z > 0.

Assume that G has an analytic continuation to a neighborhood of the imagi-

nary axis Re z = 0. Then

∫ ∞
0

F (t) dt exists as an improper integral and is equal

to G(0).

A corollary of Theorem 5.16 is

corollary 5.17 Let f be a non-negative, piecewise continuous and non-

decreasing function on [0,∞) such that

f(x) = O(x).
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Then its Mellin’s transform

g(z) = z

∫ ∞
1

f(x)x−z−1 dx

exists for Re z > 1 and defines an analytic function g. Assume that for some

constant c, the function

g(z)− c

z − 1

has an analytic continuation to a neighborhood of the line Re z = 1. Then

lim
x→∞

f(x)

x
= c.

Before we prove the main theorem and the corollary, we first deduce Prime

Number Theorem from Corollary 5.17. Let f(x) = x in the corollary. By Chebyschev’s

Theorem,

ψ(x) = O(x).

Note that

g(z) = z

∫ ∞
1

ψ(x)x−z−1 dx = −ζ
′(z)

ζ(z)
.

The function

g(z)− 1

z − 1

is analytic on Re z = 1. Therefore, by Corollary 5.17,

ψ(x) ∼ x

and Prime Number Theorem is true.

We now prove Corollary 5.17 using Theorem 5.16.

Proof of Corollary 5.17

Let F (t) = e−tf(et)− c. Note that f(x) = O(x) implies that F (x) is bounded.

Consider the integral

G(z) =

∫ ∞
0

(e−tf(et)− c)e−zt dt.

Set x = et. Then

G(z) =

∫ ∞
1

(
f(x)

x
− c
)
x−z−1 dx =

g(z + 1)

z + 1
− c

z
=

1

z + 1

(
g(z + 1)− c

z
− c
)
.

From the hypothesis, G(z) has an analytic continuation to a neighborhood of

the line Re z = 0. Therefore,

∫ ∞
0

F (t) dt exists and converges to G(0). In terms

of f , this implies that ∫ ∞
0

(e−tf(et)− c) dt
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exists, or ∫ ∞
1

(
f(x)

x
− c
)
dx

x

exists.

We need to show that

lim
x→∞

f(x)

x
= c.

Suppose that

lim
f(x)

x
> c.

Then there exists a δ > 0 such that c+2δ is not an upper bound of f(x)/x. This

implies that

f(y)

y
> (c+ 2δ)

for some positive real number y. Let ρ =
c+ 2δ

c+ δ
> 1. Then for y < x < ρy,

(c+ δ)x < (c+ 2δ)y < f(y) < f(x).

Here, ∫ ρy

y

(
f(t)

t
− c
)
dt

t
≥
∫ ρy

y

δ

t
dt = δ ln

(
c+ 2δ

c+ δ

)
.

This implies that ∫ ∞
1

(
f(t)

t
− c
)
dt

t

is not convergent. Therefore,

lim
f(x)

x
≤ c.

Similarly,

lim
f(x)

x
≥ c

and we must have

lim
x→∞

f(x)

x
= c.

We now prove Theorem 5.16.

Proof of Theorem 5.16

Since F is bounded, |F | ≤M . By replacing F with F/M , we may assume that

|F (t)| ≤ 1
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for t ≥ 0. For 0 < λ <∞, define

Gλ(z) =

∫ λ

0

F (t)e−zt dt.

We want to show that

lim
λ→∞

Gλ(0) = G(0).

Consider the following contour:

Denote the contour on the right of y-axis by γ+
R and the contour on the left by

γ−R . Denote the union of the contour by γR. We suppose the straight line on

the left is given by x = −δ(R) with δ(R) > 0. Note that by Cauchy’s integral

formula

G(0)−Gλ(0) =
1

2πi

∫
γR

(G(z)−Gλ(z)) eλz
(

1

z
+

z

R2

)
dz.

If z ∈ γ+
R , then

1

z
+

z

R2
= 2

Re z

R2
.

Furthermore, since |F | ≤ 1,

|G(z)−Gλ(z)| = |
∫ ∞
λ

F (t)e−zt dt| ≤
∫ ∞
λ

e−xtdt =
e−λx

x
.

This implies that ∣∣∣∣(G(z)−Gλ(z)) eλz
(

1

z
+

z

R2

)∣∣∣∣ ≤ 2

R2
.

Therefore, ∣∣∣∣∣ 1

2πi

∫
γ+
R

(G(z)−Gλ(z)) eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤ 1

R

and the integral tends to 0 as R tends to ∞.
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Next, on γ−R , we have∣∣∣∣∣ 1

2πi

∫
γ−R

(G(z)−Gλ(z)) eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

2πi

∫
γ−R

G(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣
+

∣∣∣∣∣ 1

2πi

∫
γ−R

−Gλ(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣
≤ I1(R) + I2(R).

For I2(R), the function Gλ(z) is entire and so we may replace γ−R by the semi-

circle from iR to −iR and deduce that

I2(R) ≤ 1

R

which tends to 0 as R tends to ∞.
For I1(R), we splits the contour γ−R into two parts. Suppose the purple vertical

line in the diagram is given by Re z = −δ1, δ1 > 0. Then if |G(z)| ≤ M(R) for

z ∈ γ−R , then

I1(R) ≤ 1

2
M(R)e−λδ1

(
1

δ(R)
+

1

R

)
R+

1

π
M(R)

(
1

δ(R)
+

1

R

)
sin−1 δ1

R
,

where the first estimate is from the contour to the left of Re z = −δ1 and the

second estimate is from the contour to the right of Re z = −δ1. For the first

estimate, we find that it tends to 0 as λ tends to ∞. For the second estimate,

we see that it tends to 0 as δ1 tends to 0. This completes the proof the theorem.
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6.1 Absolute convergence of a Dirichlet series

definition 6.1 A Dirichlet series is a series of the form
∞∑
n=1

f(n)

ns
, s = σ + it,

where f(n) is an arithmetical function.

Note that if σ ≥ a then |ns| ≥ na. Therefore,∣∣∣∣f(n)

ns

∣∣∣∣ ≤ |f(n)|
na

.

Therefore, if a Dirichlet series converges absolutely for s = a + ib, then by the

comparison test, it also converges absolutely for all s with σ ≥ a. This observation

implies the following theorem.

theorem 6.1 Suppose the series

∞∑
n=1

∣∣∣∣f(n)

ns

∣∣∣∣
does not converge for all s or diverge for all s. Then there exists a real number

σa called the abscissa of absolute convergence, such that the series

∞∑
n=1

f(n)

ns

converges absolutely if σ > σa but does not converge absolutely if σ < σa.

Proof

Let D be the set of all reals σ such that
∞∑
n=1

∣∣∣∣f(n)

ns

∣∣∣∣
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diverges. Then D is not empty because the series does not converge for all s. The

set D is bounded above since the series does not diverge for all s. Therefore, D

has a least upper bound which we call σa. If σ < σa then we claim that

∞∑
n=1

|f(n)|
nσ

diverges. For otherwise,
∞∑
n=1

|f(n)|
nσ

converges implies
∞∑
n=1

∣∣∣∣f(n)

ns

∣∣∣∣
converges for all Re s > σ. Hence, σ is an upper bound for D and since σ < σa,

σa is not a least upper bound for D.

If σ > σa, then σ 6∈ D since σa is an upper bound for D and the Dirichlet

series converges absolutely. This proves the theorem.

6.2 The Uniqueness Theorem

theorem 6.2 Let

F (s) =

∞∑
n=1

f(n)

ns
and G(s) =

∞∑
n=1

g(n)

ns

be absolutely convergent for σ > σ0. If F (s) = G(s) for each s in an infinite

sequence {sk} such that σk →∞ as k →∞, then f(n) = g(n) for every n.

Proof

Let h(n) = f(n)− g(n) and let H(s) = F (s)−G(s). Then H(sk) = 0 for each k.

To prove that h(n) = 0 for all n we assume that h(n) 6= 0 for some n and obtain

a contradiction.

Let N be the smallest integer n for which

h(n) 6= 0. (6.1)

Then

H(s) =

∞∑
n=N

h(n)

ns
=
h(N)

Ns
+

∞∑
n=N+1

h(n)

ns
.

Hence,

h(N) = NsH(s)−Ns
∞∑

n=N+1

h(n)

ns
.
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Putting s = sk, we have H(sk) = 0, and hence

h(N) = −Nsk

∞∑
n=N+1

h(n)

nsk
.

Choose k so that σk > c where c > σa. Now, note that

Nσk

nσk
=
Nσk−c

nσk−c
N c

nc
≤
(

N

N + 1

)σk−c N c

nc
.

Then

|h(N)| ≤
(

N

N + 1

)(σk−c)

N c
∞∑

n=N+1

|h(n)|
nc

=

(
N

N + 1

)σk−c
A

where A is independent of k. Letting k →∞, we find that(
N

N + 1

)σk
→ 0.

Hence, h(N) = 0, a contradiction to (6.1). Consequently, h(n) = 0 for all positive

integers n.

The above result is very useful. For example let f(n) be a completely multi-

plicative function. Suppose

F (s) =

∞∑
n=1

f(n)

ns

and

G(s) =

∞∑
n=1

f−1(n)

ns

are absolutely convergent for σ ≥ σ0. Then we know that

G(s) = 1/F (s) =
∏
p

(
1− f(p)

ps

)
=

∞∑
n=1

µ(n)f(n)

ns
.

By Theorem 6.2, this shows that

f−1(n) = µ(n)f(n).

6.3 Multiplication of Dirichlet series

The next theorem relates products of Dirichlet series with the Dirichlet convo-

lution of their coefficients.
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theorem 6.3 Given two functions F (s) and G(s) represented by Dirichlet

series

F (s) =

∞∑
n=1

f(n)

ns
for σ > a,

and

G(s) =

∞∑
n=1

g(n)

ns
for σ > b.

Then in the half plane where both series converge absolutely, we have

F (s)G(s) =

∞∑
n=1

f ∗ g(n)

ns
.

If

F (s)G(s) =

∞∑
n=1

α(n)

ns

for all s in a sequence {sk} such that σk →∞ as k →∞ then α = f ∗ g.

Proof

For any s for which both series converge absolutely, we have

F (s)G(s) =

∞∑
n=1

∞∑
m=1

f(n)g(m)

(nm)s
.

Because of absolutely convergence, we can multiply these series together and

arrange the terms in any way we please without altering the sum. Collect together

those terms for which mn is constant, say mn = k. The possible values of k are

1, 2, · · · , hence,

F (s)G(s) =

∞∑
k=1

( ∑
mn=k

f(n)g(m)

)
ks

=

∞∑
k=1

h(k)

ks

where

h(k) =
∑
mn=k

f(n)g(m) = f ∗ g(k).

This proves the first assertion. The second assertion follows from Theorem 6.2.
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6.4 Conditional convergence of Dirichlet series

theorem 6.4 For every Dirichlet series, there exists σc ∈ [−∞,∞] such that

the series converges (conditionally) for any s with σ > σc and diverges for any s

with σ < σc. Moreover,

σc ≤ σa ≤ σc + 1.

Proof

We will show that if

∞∑
n=1

f(n)

ns

converges for s = s1, then it also converges for every s with σ > σ1.

Since

∞∑
n=1

f(n)

ns

converges at s = s1, we conclude that there exists a positive integer N0 such

that ∣∣∣∣∣∣
∑

y<n≤x

f(n)

ns1

∣∣∣∣∣∣ ≤ 1

for all integers x > y > N0. Now, let s with σ > σ1 be given and let x > y ≥ N0.

Let ε > 0 be given. Then

∑
y<n≤x

f(n)

ns
=

∑
y<n≤x

f(n)

ns1
ns1−s

=
∑

y<n≤x

f(n)

ns1
xs1−s − f(y)

ys1
ys1−s −

∫ x

y

∑
y<n≤t

f(n)

ns1
ts1−s−1(s1 − s)dt.

Therefore, ∣∣∣∣∣∣
∑

y<n≤x

f(n)

ns

∣∣∣∣∣∣ ≤ 2yσ1−σ +

∫ x

y

|s1 − s|tσ1−σ−1dt

≤ 2yσ1−σ
(

1 +
|s1 − s|
σ − σ1

)
(6.2)

< ε
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provided that

y ≥


2

(
1 +
|s1 − s|
σ − σ1

)
ε


1/(σ−σ1)

.

We have therefore shown that for any ε > 0 and a fixed s with σ > σ1,∣∣∣∣∣∣
∑

y<n≤x

f(n)

ns

∣∣∣∣∣∣ < ε

whenever

x ≥ y ≥ max

N0,

2

(
1 + |s1−s|

σ−σ1

)
ε


1/(σ−σ1)

 .

This shows the convergence of the Dirichlet series at s.

Now, let

σc := sup

{
Re s|

∞∑
n=1

f(n)

ns
diverges

}
. (6.3)

If σ > σa then by previous argument, we conclude that F (s) is convergent

whenever σ = σa + δ, δ > 0. Therefore, we conclude that σa ≥ σc.
It remains to show that σa ≤ σc + 1. We first show that if

∞∑
n=1

f(n)

ns

is convergent at s = s1 then it is absolutely convergent at any s with σ > σ1 + 1.

The series
∞∑
n=1

f(n)

ns1

is convergent implies that f(n)n−s1 → 0 as n→∞, or∣∣∣∣f(n)

ns1

∣∣∣∣ ≤ C
for all n ∈ N and some positive constant C. Given s with σ > σ1 + 1,∣∣∣∣f(n)

ns

∣∣∣∣ =

∣∣∣∣f(n)

ns1

∣∣∣∣ 1

nσ−σ1
≤ C

nσ−σ1
,

with σ − σ1 > 1. Therefore, for any positive integer m,

m∑
n=1

∣∣∣∣f(n)

ns

∣∣∣∣ ≤ m∑
n=1

C

nσ−σ1
.
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Since σ − σ1 > 1, the series
∞∑
n=1

1

nσ−σ1

converges. By comparison test, we conclude that

∞∑
n=1

f(n)

ns

is absolutely convergent.

Now, we have shown that if
∞∑
n=1

f(n)

ns

is convergent at s1 = σ1 + it, then
∞∑
n=1

f(n)

ns
is aboslutely convergent whenever

σ > σ1 + 1.

Therefore,

σ1 + 1 ≥ σa.

Now,

σ1 = σc + δ

for any positive δ and hence,

σc + 1 ≥ σa.

6.5 Landau’s Theorem for Dirichlet series

theorem 6.5 A Dirichlet series

F (s) =

∞∑
n=1

f(n)

ns

is analytic in σ > σc, where σc is given by (6.3).

We now come to the main theorem of this chapter.

theorem 6.6 Let

F (s) =

∞∑
n=1

f(n)

ns
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be a Dirichlet series with f(n) ≥ 0 for all n ∈ N and σc <∞. Then the function

F (s) has a singularity at s = σc.

Proof

Suppose F (s) is analytic at σc. Then there exists δ > 0 such that F (s) is analytic

in D1 := {s : |s−σc| < δ}. Fix a point on the real axis, say σ0 > σc contained in

this disc and an ε > 0 such that the whole disc D2 := {s : |s− σ0| < ε} is inside

D1 and σc ∈ D2 (see the following diagram).

D2

D1

σc σ0

σ

δ

x

y

Since F (s) is analytic in D1, and hence analytic in D2, we conclude that for

s ∈ D2,

F (s) =

∞∑
n=0

F (n)(σ0)

n!
(s− σ0)n.

Next, the Dirichlet series is convergent for σ > σ0. So for σ close to σ0 (for

example, s is in an open ball centered at σ0 that lies to the right of x = σc),

F (s) is given by

F (s) =

∞∑
n=1

f(n)

ns
.

Therefore, we can differentiate the above term by term and substitute s = σ0 to

deduce that

F (ν)(σ0) =

∞∑
n=1

(−1)ν
f(n) lnν n

nσ0
.

Substituting this into the Taylor series expansion, we find that

F (s) =

∞∑
ν=0

(σ0 − s)ν

ν!

∞∑
n=1

(
f(n) lnν n

nσ0

)
.
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Now taking s real, say σ0 − ε < s = σ < σc, we have

F (σ) =

∞∑
ν=0

(σ0 − σ)ν

ν!

∞∑
n=1

(
f(n) lnν n

nσ0

)

=

∞∑
n=1

f(n)

nσ0

∞∑
ν=0

(σ0 − σ)ν lnν n

ν!
,

where the interchanging of the summations is valid since f(n) ≥ 0 and σ0−σ ≥ 0.

Hence,

F (σ) =

∞∑
n=1

f(n)

nσ0
exp((σ0 − σ) lnn)

=

∞∑
n=1

f(n)

nσ0
nσ0−σ =

∞∑
n=1

f(n)

nσ
.

The last equality shows that Dirichlet series is convergent for some σ < σc and

this contradicts our assumption that σc is the abscissa of conditional convergence.



7 Primes in Arithmetic Progression

7.1 Introduction

In Chapter 4, we proved that there are infinitely many primes by showing that

(see Theorem 4.9 (c)) ∑
p≤x

1

p
= ln lnx+O(1). (7.1)

The Dirichlet Theorem of primes in arithmetic progression states that for (k, l) =

1, there are infinitely many primes of the form kn + l. If we can prove a result

similar to (7.1), with sum over primes p replaced by sum over primes of the form

kn+ l, then we would have Dirichlet’s Theorem as a consequence. This strategy

motivates the following theorem.

theorem 7.1 Let k > 1 and l be positive integers such that (k, l) = 1. Then∑
p≤x

p≡l (mod k)

1

p
=

ln lnx

ϕ(k)
+O(1).

Theorem 7.1 immediately implies the Dirichlet Theorem of primes in arith-

metic progression.

theorem 7.2 (Dirichlet’s Theorem of primes in arithmetic progression) If k

and l are positive integers such that (k, l) = 1, then there are infinitely many

primes of the form kn+ l.

7.2 Dirichlet’s characters
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definition 7.1 A Dirichlet character (mod k) is an arithmetical function

χ : N→ C

satisfying

(i) χ(mn) = χ(m)χ(n) for all m,n ∈ N.

(ii) |χ(n)| =

{
1 if (n, k) = 1

0 otherwise.

(iii) χ(n+ km) = χ(n) for all n,m ∈ N,

(iv) χϕ(k)(n) = 1, (n, k) = 1.

Remark 7.1

(a) The values of χ are 0 or ϕ(k)-th roots of unity. This follows from (iv).

(b) There are only finitely many characters (mod k). This follows from the fact

that χ is defined on ϕ(k) values j with 1 ≤ j ≤ k and (j, k) = 1. Hence,

from (iv), we see that for each j, there are ϕ(k) values we can assign to χ(j).

This shows that there can be at most ϕ(k)
ϕ(k)

characters.

(c) If χ1 and χ2 are characters (mod k), then so is χ1χ2.

(d) A character χ (mod k) can be obtained from a homomorphism

χ̃ : (Z/kZ)
∗ → {z ∈ C||z| = 1}

where (Z/kZ)
∗

is the multiplicative group of residue classes

({[n]k|(n, k) = 1}, ·),

with multiplication · as group operation. Given a character χ̃, one defines

χ(n) =

{
χ̃([n]k), (n, k) = 1

0, otherwise.

Conversely, given χ, one obtains a homomorphism χ̃ given by

χ̃([n]k) = χ(n).

This shows that there is a one to one correspondence between Dirichlet’s

characters (mod k) and homomorphisms from

(Z/kZ)
∗

to {z ∈ C||z| = 1}.

theorem 7.3 There are exactly ϕ(k) characters (mod k).

Proof
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From Remark 7.1 (d) above, it suffices to show that there are exactly ϕ(k)

homomorphisms from

(Z/kZ)
∗

to {z ∈ C||z| = 1}.

From the structure theorem of abelian group, we know that (Z/kZ)
∗

can be

written as a direct sums of cyclic groups with prime power order, say,

(Z/kZ)
∗

= Ch1 × · · · × Chr ,

where hi are prime powers and Cm denotes a cyclic group of order m.

Let [ai]k be a generator for Chi , 1 ≤ i ≤ r. Given w1, · · · , wr such that

whii = 1,

set

χ̃([ai]k) = wi, 1 ≤ i ≤ r.

If

[n]k =
∏
i

[ai]
αi
k ,

then define

χ̃([n]k) =
∏
i

χ̃([ai]k)αi .

Note that χ̃ is a homomorphism from

(Z/kZ)
∗

to {z ∈ C||z| = 1}.

Therefore, we have at least

h1 · · ·hr = ϕ(k)

such homomorphisms.

Next, let [a]k ∈ (Z/kZ)
∗
. Then

[a]k = [a1]α1

k · · · [ar]
αr
k

where

0 ≤ αi ≤ hr − 1.

Now if χ̃ is a homomorphism from

(Z/kZ)
∗

to {z ∈ C||z| = 1},

then

χ̃([a]k) =
∏
i

χ̃([ai]k)αi .

The value χ̃([a]k) is dependent on the values χ̃([ai]k), 1 ≤ i ≤ r. The number

of possible values for χ̃([ai]k) is hi, 1 ≤ i ≤ r. Therefore, there can be at most

h1h2 · · ·hr = ϕ(k) characters. In conclusion, we deduce that there are exactly

ϕ(k) characters (mod k).



7.3 The orthogonal relations 99

The character χ0 will always denote the principal character (mod k), that is,

χ0(n) =

{
1 if (n, k) = 1

0 otherwise.

The character χ will denote the inverse of χ, or, χ · χ = χ0.

The set of Dirichlet characters forms an abelian group with binary operation

χ1χ2 to be defined as χ1χ2(n) = χ1(n)χ2(n). This group, which we will denote

as Ĝ has identity χ0.

Remark 7.2 The above Theorem is a special case from a more general Theorem

in the theory of characters. In general a linear representation is a homomorphism

ρ : G → GLn(C). A character is defined to be χ(g) = Trace(ρ(g)). In general,

χ is not a homomorphism. However, when G is abelian, all irreducible repre-

sentations are 1-dimensional over C. In this case, χ(g) = ρ(g), and so, χ is a

homomorphism. Furthermore, from character theory, we know that there are ex-

actly C irreducible characters for a finite group with C conjugacy classes. When

G is abelian, each element represents a single conjugacy class and so, there are

exactly |G| conjugacy classes, hence exactly |G| characters. This explains why

there are exactly ϕ(k) characters mod k.

7.3 The orthogonal relations

In this section, we will often identify (see Remark 7.1 (d)) Dirichlet’s characters

χ with homomorphism χ̃ from

(Z/kZ)
∗

to {z ∈ C||z| = 1}.

theorem 7.4 (a) Let χ1, χ2 be two Dirichlet’s characters modulo k. Then

k∑
a=1

χ1(a)χ2(a) =

{
ϕ(k) if χ1 = χ2,

0 otherwise.

(b) Let a1, a2 be integers with (ai, k) = 1. Then∑
χ (mod k)

χ(a1)χ(a2) =

{
ϕ(k) if a1 ≡ a2 (mod k),

0 otherwise.
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Proof

We will prove the following:

k∑
a=1

χ(a) =

{
ϕ(k) if χ = χ0,

0 otherwise.
(7.2)

We first observe that since χ(l) = 0 whenever (l, k) 6= 1, we must have

k∑
a=1

χ(a) =

k∑
a=1

(a,k)=1

χ(a).

If χ = χ0 then for (a, k) = 1, χ(a) = 1 and

n∑
a=1

χ(a) =
k∑
a=1

(a,k)=1

χ(a) =
k∑
a=1

(a,k)=1

1 = ϕ(k).

If χ 6= χ0, then there exists an a0 relatively prime to k such that χ(a0) 6= 1.

Now,

χ(a0)

k∑
a=1

χ(a) = χ̃([a0]k)
∑

[a]k∈(Z/kZ)∗

χ̃([a]k)

=
∑

[a]k∈(Z/kZ)∗

χ̃([a0]k[a]k).

Now, the multiplication of elements in (Z/kZ)
∗

by [a0]k permutes the elements

in (Z/kZ)
∗
. Hence,

∑
[a]k∈(Z/kZ)∗

χ̃([a0]k[a]k) =
∑

[a]k∈(Z/kZ)∗

χ̃([a]k) =

k∑
a=1

χ(a).

Therefore, we conclude that

k∑
a=1

χ(a) = 0.

We now let χ = χ1χ2 in (7.2) to complete the proof of (a).

Proof of (b).

We will first show that∑
χ (mod k)

χ(a) =

{
ϕ(k) if a ≡ 1 (mod k),

0 otherwise.
(7.3)
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If a ≡ 1(mod k) then χ(a) = 1 for all characters χ. Since there are exactly ϕ(k)

such characters, we conclude that∑
χ

χ(a) = ϕ(k).

Next, suppose a 6≡ 1(mod k). Then since characters are constructed by assign-

ing roots of unity to the image of the characters on the generators of the cyclic

components of (Z/kZ)
∗
, there exists a character χ∗ so that χ∗(a) 6= 1. Therefore,

χ∗(a)
∑
χ

χ(a) =
∑
χ

χ∗χ(a) =
∑
χ

χ(a),

where we have used the fact that multiplying the elements in the set of characters

by χ∗ permutes the elements in the set. This implies that∑
χ

χ(a) = 0.

Now, in order to prove (b), we simply view χ as χ̃ and let [a]k = [a1]k[a2]k
where [a]k denotes the inverse of [a]k in the group (Z/kZ)

∗
, and observe that

χ(a1)χ(a2) = χ̃([a1]k)χ̃([a2]k).

7.4 The Dirichlet L-series

definition 7.2 The Dirichlet L-series is defined as

L(s, χ) =
∑
n≥1

χ(n)

ns
, σ > 1.

theorem 7.5 (a) If χ = χ0 then L(s, χ) can be analytically continued to the

half-plane σ > 0, with the exception of the point s = 1 where it has a simple

pole with residue ϕ(k)/k.

(b) If χ is not the principal character (mod k), then L(s, χ) can be analytically

continued to σ > 0.

Proof of (a)

For σ > 1, we have by Theorem 5.4,

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

.
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Therefore,

L(s, χ0) =
∏
p-k

(
1− 1

ps

)−1

=
∏
p

(
1− 1

ps

)−1∏
p|k

(
1− 1

ps

)
.

The function ζ(s) has an analytic continuation with residue 1 at s = 1. There-

fore, the residue of L(s, χ0) at s = 1 is ϕ(k)/k since

lim
s→1

∏
p|k

(
1− 1

ps

)
=
ϕ(k)

k
.

Proof of (b)

If χ 6= χ0, then

k∑
n=1

χ(n) = 0.

Therefore, ∣∣∣∣∣∣
∑
n≤x

χ(n)

∣∣∣∣∣∣ ≤ k,
for x ≥ 1. Hence, for any ε > 0,∣∣∣∣∣∣

∑
y≤n≤x

χ(n)

ns

∣∣∣∣∣∣ ≤ 1

|ys|

∣∣∣∣∣∣
∑

y≤n≤x

χ(n)

∣∣∣∣∣∣ < k

|y|σ
< ε,

whenever

|y| >
(
k

ε

)1/σ

.

This implies that L-series converges for σ > 0.

7.5 Proof of Dirichlet’s Theorem

Step 1.

It suffices to show that if x ≥ 3 and

σ = 1 +
1

lnx
,

then ∑
p

p≡l (mod k)

1

pσ
=

1

ϕ(k)
ln

(
1

σ − 1

)
+O(1).
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Let

Σ1 =
∑

p≡l (mod k)

1

pσ
and Σ2 =

∑
p≤x

p≡l(mod k)

1

p
,

where

σ = 1 +
1

lnx
.

Then

|Σ1 − Σ2| ≤
∑
p≤x

(
1

p
− 1

pσ

)
︸ ︷︷ ︸+

∑
p>x

1

pσ︸ ︷︷ ︸ .
Σ3 Σ4

Now,

Σ3 =
∑
p≤x

1− e−(σ−1) ln p

p
=
∑
p≤x

∞∑
m=1

−(−(σ − 1) ln p)m

m!p

=
∑
p≤x

(σ − 1) ln p

p

∞∑
m=1

−(−(σ − 1) ln p)m−1

m!

≤ 1

lnx

∑
p≤x

ln p

p

∞∑
m=1

((σ − 1) ln p)m−1

(m− 1)!

≤ 1

lnx

∑
p≤x

ln p

p
e(σ−1) ln p

≤ 1

lnx

∑
p≤x

ln p

p
x1/ ln x = O(1).

Next,

Σ4 = lim
y→∞

∑
x≤p≤y

1

pσ

= lim
y→∞

 1

yσ

∑
p≤y

1− 1

xσ

∑
p≤x

1−
∫ y

x

∑
p≤t

1
(
− σ

tσ+1

)
dt


= O(1) +

∫ ∞
x

O

(
t

ln t

)
dt

tσ+1

= O(1) +O

(∫ ∞
x

dt

tσ ln t

)
= O(1) +O

(
1

lnx

∫ ∞
x

dt

tσ

)
= O(1).
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Therefore, if

σ = 1 +
1

lnx
,

then ∑
p

p≡l (mod k)

1

pσ
=

1

ϕ(k)
ln

1

σ − 1
+O(1)

and Dirichlet’s Theorem holds.

Step 2.

We observe that for σ > 1,

∑
p

p≡l (mod k)

1

pσ
=
∑
p

1

pσ

 1

ϕ(k)

∑
χ (mod k)

χ(l)χ(p)


=

1

ϕ(k)

∑
χ (mod k)

χ(l)S(σ, χ),

where

S(σ, χ) =
∑
p

χ(p)

pσ
.

Now,

S(σ, χ0) =
∑
p

χ0(p)

pσ
=
∑
p

1

pσ
−
∑
p|k

1

pσ

=
∑
p

1

pσ
+O(1). (7.4)

But

−
∑
p

ln

(
1− 1

pσ

)
−
∑
p

1

pσ
=
∑
p

∑
m≥1

1

mpmσ
−
∑
p

1

pσ
= O(1), (7.5)

since ∑
p

∑
m≥2

1

mpmσ
≤ 1

2

∑
p

∑
m≥2

1

pmσ
=

1

2

∑
p

1

pσ(pσ − 1)
= O(1).

Hence, by (7.4) and (7.5),

S(σ, χ) =
∑
p

1

pσ
+O(1) = −

∑
p

ln

(
1− 1

pσ

)
+O(1)

= ln
∏
p

(
1− 1

pσ

)−1

+O(1)

= ln ζ(σ) +O(1).
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Now,

ζ(σ) =
1

σ − 1
+ g(σ),

where g(σ) is a function analytic at 1. Hence,

ln ζ(σ) = ln

(
1

σ − 1

)
+ ln(1 + (σ − 1)g(σ)).

Since ln(1 + (σ − 1)g(σ)))→ 0 as σ → 1, we conclude that

S(σ, χ0) = ln

(
1

σ − 1

)
+O(1).

We conclude that the main term arises from the principal character χ0. Hence,

it remains to show that

S(σ, χ) = O(1)

for σ > 1 and all non-principal characters χ(mod k).

Step 3.

Now, using computations similar to Step 2, we find that

S(σ, χ) =
∑
p

χ(p)

pσ
=
∑
p

∑
m≥1

χ(p)m

mpmσ
+O(1)

= −
∑
p

ln

(
1− χ(p)

pσ

)−1

+O(1)

= ln(L(σ, χ)) +O(1).

Now, for χ 6= χ0 L(s, χ) is analytic in σ > 0. So, L(σ, χ) is continuous at σ > 1

and

lim
σ→1

L(σ, χ) = L(1, χ).

If L(1, χ) 6= 0 then we are done. It remains to show that L(1, χ) 6= 0.

Step 4.

We first show that when χ 6= χ0 is a complex character (mod k), then

L(1, χ) 6= 0.

Consider the expression

P (σ) =
∏

χ (mod k)

L(σ, χ).
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We find that for σ > 1,

lnP (σ) =
∑

χ (mod k)

lnL(σ, χ)

=
∑

χ (mod k)

∑
p

∑
m≥1

χ(pm)

mpmσ

=
∑
p

∑
m≥1

1

mpmσ

∑
χ (mod k)

χ(pm)χ(1)

=
∑
p

∑
m≥1

pm≡1 (mod k)

1

mpmσ
≥ 0.

Hence, for σ > 1,

P (σ) ≥ 1. (7.6)

Suppose that L(1, χ) = 0 for some χ. Then L(1, χ̄) = 0. Hence, P (s) has two

zeros at s = 1. But L(s, χ0) has a simple pole at s = 1, which means that

P (1) = 0. This is a contradiction to (7.6).

Step 5.

In this final step, we show that for real character χ 6= χ0, L(1, χ) 6= 0. Consider

the function f = χ ∗ u. Then f is multiplicative since it is the Dirichlet product

of two multiplicative functions. Note that

m∑
l=0

χ(pl) =


1 if p|k
≥ 1 if p - k,m even

≥ 0 if p - k,m odd .

Thus, f(n) ≥ 0 for all n and f(n) ≥ 1 when n is a square. Hence,

F (σ) =
∑
n≥1

f(n)

nσ
≥
∑
n≥1

1

n2σ
= ζ(2σ).

In particular, F (σ) diverges at σ = 1/2 and so σc ≥ 1/2. By Theorem 6.6,

F (s) must have a singularity at s = σc ≥ 1/2.

On the other hand, for σ > 1,

F (s) = L(s, χ)ζ(s).

If L(1, χ) = 0, then F (s) would be analytic in σ > 0 and hence at σ = σc. This

contradicts our previous observation that F (s) has a singularity at σc and we

must have L(1, χ) 6= 0.

From Steps 3 and 4, we conclude that L(1, χ) 6= 0 for all non-principal char-

acters χ. This completes the proof of Dirichlet’s Theorem.
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Remark 7.3 The Dirichlet Theorem is a special case of the Chebotarev Density

Theorem.

Remark 7.4 If p is a prime that satisfies the property that p + 2 is also a

prime, then we call p a twin prime.The twin primes conjecture states that there

are infinitely many twin primes. This statement remains an open problem.

Motivated by Merten’s estimates and the proof of Dirichlet’s Theorem of

primes in arithmetical progression, it is natural to consider the sum∑
p≤x,p∈T

1

p

where T is the set of twin primes. If one can prove that the sum is divergent,

then there would be infinitely many primes. Unfortunately, this sum turns out

to be convergent (using sieve method). Consequently, this line of attack fails to

provide a proof of the twin primes conjecture.



8 Introduction to Sieves

8.1 A weaker upper bound for π(x)

Sieve methods are important tools in analytic number theory. The earliest sieve

is due to Eratothenes. The basic ideas of sieves are simple. Given a set of integers

less than x, we want to sieve out set A which satisfies a certain property P. For

example, how many primes are there from 1 to x? We know that by elementary

argument that an integer n ≤ x is a prime if p - n for all p ≤
√
x. In other words,

if

P =
∏
p≤
√
x

p,

then to decide if
√
x < n < x is a prime, it suffices to check if (n, P ) = 1.

Let x > 1 be a real number and π(x) be the number primes less than x. We

find that

π(x)− π(
√
x) =

∑
√
x<n≤x

(n,P )=1

1

=
∑

√
x<n≤x

∑
d|P
d|n

µ(d)

=
∑
d|P

µ(d)
∑

√
x<n≤x
d|n

1

=
∑
d|P

µ(d)

([x
d

]
−
[√

x

d

])

= x
∑
d|P

µ(d)

d
+O

∑
d|P

1

−√x∑
d|P

µ(d)

d

= x
∏
p≤
√
x

(
1− 1

p

)
+O

(
2π(
√
x)
)
−
√
x
∏
p≤
√
x

(
1− 1

p

)
.
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But by Merten’s estimate,

x
∏
p≤
√
x

(
1− 1

p

)
= O

( x

lnx

)
and so, the error term 2π(

√
x) is larger than the main term, that is, (please check)

2π(
√
x) � x

lnx
.

We now modify the argument, introducing a new parameter 1 ≤ y ≤ x.
Given an integer n ≤ x, a necessary condition for n to be composite is that

p|n, p ≤ y. Then

π(x)− π(y) ≤ α(x), (8.1)

where

α(x) =
∑
n≤x

p|n =⇒ p>y

1 =
∑
n≤x

(P,n)=1

1,

with

P =
∏
p≤y

p.

To see why (8.1) is true, we note that the left hand side gives the number of

primes between y and x. The function α(x) measures the number of integers

n ≤ x that are divisible by “large primes”, that is, primes greater than y. This

would include primes between y and x and hence the left hand side is less than

the right hand side of (8.1). But α(x) also counts those integers n ≤ x which are

relatively prime to P .

Therefore,

π(x)− π(y) = O

x∏
p≤y

(
1− 1

p

)+O
(

2π(y)
)

= O

(
x

ln y

)
+O(2y).

Setting y = lnx, we find that

xln 2 � x

ln lnx
,

and hence

π(x)− π(lnx) + 1� x

ln lnx
,

or, as a corollary,

π(x)� x

ln lnx
.

This bound is of course weaker than Tchebychev’s estimate but nonetheless, it

is a non-trivial bound that is obtained from replacing
√
x by y.



110 Introduction to Sieves

We will now study the situation closely. Let A be a subset of the set of integers

less than x and P be the set of primes. Let

E = {n ∈ A|n 6≡ 0 (mod p) for all p ∈ P}.

The set E is an example of a sifted set. Note that in our example above, our set

A is the set of integers less than x and P is the set of primes less than y and

α(x) = |E|.

8.2 The Large sieve and its applications

We now generalize the situation in the previous section. Let A be a subset of

N. Let P be the set of primes less than Q. Let Ωp be a set of γ(p) distinguished

residue classes modulo p. Let

E = {n ∈ A|n (mod p) 6∈ Ωp for all p ∈ P}.

In the case when we are bounding π(x), the distinguished residue class is 0

(mod p).

Let

S(A,P, Q) = |E|.

Our aim is to bound S(A,P, Q).

theorem 8.1 (The Large Sieve) Let N and Q be positive integers. Let A be

the set of integers between 1 and N . Let Q be the set of q ≤ Q whose prime

factors are in P. Then

S(A,P, Q) ≤ CN +Q2

L

where C is some positive constant (which can be taken as 2π as seen in the

proof) and

L =
∑
q∈Q

µ2(q)
∏
p|q

γ(p)

p− γ(p)
.

We will prove Theorem 8.1 in the next few sections. We begin with some

applications of the Large Sieve.

example 8.1 Let A = {n|n ≤ x} and P = {p prime|p ≤
√
x}. In other words,

Q =
√
x. Let Ωp = {0}. This implies that γ(p) = 1. Let

E = {n ∈ A|n 6≡ 0 (mod p) for all p ∈ P.}.



8.2 The Large sieve and its applications 111

If n is a prime between
√
x and x then n ∈ E . Hence

π(x)− π(
√
x) ≤ |E|.

By Theorem 8.1, we conclude that

π(x)− π(
√
x) ≤ Cx+ (

√
x)2

L
� x

L

where

L =
∑
q∈Q

µ2(q)
∏
p|q

1

p− 1
.

But

L�
∑
q≤
√
x

µ2(q)

q

∏
p|q

(
1

1− 1
p

)

�
∑
q≤
√
x

µ2(q)

q

∏
p|q

(
1 +

1

p
+

1

p2
+ · · ·

)

�
∑
n≤
√
x

1

n
= lnx+O(1).

The last estimate in the above follows by first writing

n = pα1
1 pα2

2 · · · p
αk
k q1 · · · qj

where αi ≥ 2. We then set

n′ = p1p2 · · · pkq1 · · · qj

and

n′′ = pα1−1
1 · · · pαk−1

k ,

and observe that the term
1

n′n′′

appears as a term in the form

µ2(n′)

n′
1

n′′

on the left hand side.

Hence,

π(x)� x

lnx
,

which is Chebyschev’s estimate.

The next example illustrates the use of the Large Sieve in the study of twin

primes.
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example 8.2

Let π2(x) be the number of primes p less than x such that p+ 2 is also prime.

We will show that

π2(x) = O

(
x

ln2 x

)
. (8.2)

As a result, we have ∑
p≤x

p+ 2 is a prime

1

p
= O(1).

The last conclusion follows from the expression that

π2(x)

x
+

∫ x

2

π2(t)

t2
dt� 1 +

∫ x

2

1

t ln2 t
dt� 1.

To prove (8.2), let Q =
√
x and P = {p ≤

√
x} and A = {n ≤ x}. Let

E = {n ∈ A|n 6≡ 0 (mod p) and n 6≡ −2 (mod p) for all p ∈ P}.

In other words, γ(p) = 2 if p 6= 2 and γ(2) = 1. Note that E contains twin primes

r ≤ x. By Theorem 8.1, we find that

π2(x)− π2(
√
x) ≤ |E| � x+ 1 + x

L
,

where

L =
∑
q∈Q

µ2(q)
∏
p|q

γ(p)

p− γ(p)
,

with Q containing integers with prime divisors p ≤
√
x. Now,∑

q∈Q
µ2(q)

∏
p|q

γ(p)

p− γ(p)
=
∑
q∈Q

µ2(q)
∏
p|q
p 6=2

2

p− 2

1

2− 1

=
1

2

∑
q∈Q

µ2(q)
∏
p|q
p 6=2

2

p− 2

2

2− 1

�
∑
q∈Q

µ2(q)
∏
p|q

2

p− 1

=
∑
q∈Q

µ2(q)2ω(q)

q

∏
p|q

(
1 +

1

p
+

1

p2
+ · · ·

)
.

The sum ∑
q∈Q

µ2(q)2ω(q)

q
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adds up term for which q is squarefree. But the sum∑
q∈Q

µ2(q)2ω(q)

q

∏
p|q

(
1 +

1

p
+

1

p2
+ · · ·

)
is a sum of the type ∑

q∈Q

µ2(q)2ω(q)

q

(∑
n∈B

1

n

)
,

with

B = {m| p|m =⇒ p|q}.

Therefore, ∑
q∈Q

µ2(q)2ω(q)

q

∑
n∈B

1

n
≥
∑
n∈Q

2ω(n)

n
. (8.3)

The last inequality holds because an integer n appearing on the right hand side

can be written as q · q′ where q is the squarefree part of n and that the prime

divisors of q′ are prime divisors of q. Therefore, the term 2ω(n)

n corresponding to

n can be written as

2ω(q)

q
· 1

q′

and this term is present in the sum of the left hand side. Now,∑
q∈Q

2ω(n)

n
=
∑
q≤
√
x

2ω(n)

n
.

Since ∑
n≤y

2ω(n) =
6

π2
y ln y +O(y),

and ∑
n≤y

2ω(n)

n
=

3

π2
ln2 y +O(ln y),

we conclude from (8.3) that

L� ln2√x

and we complete the proof of (8.2).

8.3 The Large Sieve inequality

In this section, we prove the Large Sieve inequality.
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theorem 8.2 Let x1, x2, · · · , xr be δ-spaced. That is to say, if

‖ x ‖= min
n∈Z
|x− n|,

then for k 6= j,

‖ xk − xj ‖≥ δ.

Let

S(x) =

N∑
n=1

ane
2πinx.

Then
r∑
j=1

|S(xj)|2 ≤ C
(
N +

1

δ

) N∑
n=1

|an|2,

where C is some positive constant.

Remark 8.1 In the above theorem, we restrict our n from 1 to N . We may

replace [1, N ] by [M + 1,M + N ] by letting an = bM+ne
2πiMx and setting

k = n+M . This gives

S∗(x) =

M+N∑
k=M+1

bke
2πiMxe2πikx =

N∑
n=1

ane
2πinx.

The Large sieve inequality then yields

R∑
j=1

|S∗(xj)|2 ≤ C
(
N +

1

δ

) N∑
n=1

|an|2 = C

(
N +

1

δ

) M+N∑
k=M+1

|bk|2,

since |e2πiMx| = 1.

To prove Theorem 8.2, we need an intermediate lemma.

lemma 8.3 If f has a continuous derivative on (x− δ/2, x+ δ/2), then

|f(x)| ≤ 1

δ

∫ x+δ/2

x−δ/2
|f(y)| dy +

1

2

∫ x+δ/2

x−δ/2
|f ′(y)| dy.

Proof

Assume x = 0. Note that∫ δ/2

0

(δ/2− y) f ′(y) dy = −δ
2
f(0) +

∫ δ/2

0

f(y) dy
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and ∫ 0

−δ/2
(δ/2 + y) f ′(y) dy =

δ

2
f(0)−

∫ 0

−δ/2
f(y) dy.

Therefore,

−
∫ δ/2

0

(δ/2− y) f ′(y) dy +

∫ 0

−δ/2
(δ/2 + y) f ′(y) dy = δf(0)−

∫ δ/2

−δ/2
f(y) dy.

Now,

|δ/2− y| ≤ δ/2 for 0 ≤ y ≤ δ/2

and

|δ/2 + y| ≤ δ/2 for −δ/2 ≤ y ≤ 0.

Hence,

|δf(0)| ≤ δ/2
∫ δ/2

−δ/2
|f ′(y)| dy +

∫ δ/2

−δ/2
|f(y)| dy.

This proves the result with x = 0. Replacing f(t) by g(x + t), we complete the

proof of the lemma.

We now prove Theorem 8.2.

Proof of Theorem 8.2

Applying Lemma 8.3 with f(x) = S2(x) and x = xi, we deduce that

|S(xi)|2 ≤
1

δ

∫ xi+δ/2

xi−δ/2
|S(y)|2dy +

1

2

∫ xi+δ/2

xi−δ/2
|2S(y)S′(y)|dy.

Summing over i from 1 to r and observing that (xi− δ/2, xi+ δ/2) modulo 1 are

non-overlapping for i = 1, · · · , r, we deduce that

r∑
i=1

|S(xi)|2 ≤
1

δ

∫ α+1

α

|S(y)|2dy +

∫ α+1

α

|S(y)S′(y)|dy.

Note that ∫ 1+α

α

|S(y)|2dy =

N∑
n=1

|an|2

and ∫ α+1

α

|S(y)S′(y)|dy ≤
(∫ α+1

α

|S(y)|2dy
)1/2(∫ α+1

α

|S′(y)|2dy
)1/2

.

Since ∫ α+1

α

|S′(y)|2dy = (4π)2
N∑
n=1

|an|2n2
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and n ≤ N , we deduce that

r∑
i=1

|S(xi)|2 ≤
1

δ

N∑
n=1

|an|2 + 2πN

(
N∑
n=1

|an|2
)1/2( N∑

n=1

|an|2
)1/2

≤ 2π

(
1

δ
+N

) N∑
n=1

|an|2.

8.4 Farey sequence and Theorem 8.1

By a Farey sequence of order n, denoted Fn, we mean a set of reduced fractions

in the interval from 0 to 1, whose denominators are less than or equal to n,

arranged in ascending order of magnitude.

One fact about elements in Farey sequence is that if a/b, a′/b′ are successive

terms in Fn, then

a′

b′
− a

b
=

1

bb′
.

Therefore, ∣∣∣∣ab − a′

b′

∣∣∣∣ =
1

bb′
>

1

Q2

if b ≤ Q. Therefore, the elements in the Farey sequence are 1/Q2 well spaced.

Using non-zeroes elements of the Farey sequence of order Q, we conclude from

Theorem 8.2 that∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2 ≤ C (N +Q2

) N∑
n=1

|an|2. (8.4)

Proof of Theorem 8.1

To prove Theorem 8.1, we will choose an such that

an = 0 whenever n 6∈ E . (8.5)

We will show that it suffices to prove the following inequality:

∣∣∣∣∣
N∑
n=1

an

∣∣∣∣∣
2

µ2(q)
∏
p|q

γ(p)

p− γ(p)
≤

q∑
a=1

(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2 . (8.6)

If (8.6) is true, then by letting

an =

{
1 if n ∈ E ,

0 otherwise.
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From (8.6), we find that∣∣∣∣∣
N∑
n=1

an

∣∣∣∣∣
2 ∑
q≤Q

µ2(q)
∏
p|q

γ(p)

p− γ(p)

 ≤∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2 .

Hence,

|E|2
∑
q∈Q

µ2(q)
∏
p|q

γ(p)

p− γ(p)

 ≤∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2

≤ C(N +Q2)

N∑
n=1

|an|2

≤ C(N +Q2)|E|.

Therefore,

|E| ≤ CN +Q2

L
,

where

L =
∑
q∈Q

µ2(q)
∏
p|q

γ(p)

p− γ(p)
.

We now prove (8.6). First, we observe that if q is not squarefree, then µ(q) = 0

and (8.6) is true since its right hand side is non-negative. From now, we may

assume q to be squarefree.

Let

J(q) = µ2(q)
∏
p|q

γ(p)

p− γ(p)
.

We now rewrite (8.6) as

q∑
a=1

(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2 ≥ |S(0)|2 J(q). (8.7)

We will now show how to establish (8.7) by first showing that it is true prime

p. Note that in (8.7), q = p1p2 · · · pk where pj , 1 ≤ j ≤ k are distinct primes.

Suppose
p∑
a=1

(a,p)=1

∣∣∣∣S (ap
)∣∣∣∣2 ≥ |S(0)|2 γ(p)

p− γ(p)
= |S(0)|2 J(p). (8.8)

By replacing an by ane
2πinβ , we find that

p∑
a=1

(a,p)=1

∣∣∣∣S (ap + β

)∣∣∣∣2 ≥ |S(β)|2 J(p). (8.9)
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Next, suppose we have proved (8.8) for p, p′ with (p, p′) = 1. Then by the

Chinese Remainder Theorem,(8.8) and (8.9), we find that

pp′∑
c=1

(a,pp′)=1

∣∣∣∣S ( c

pp′

)∣∣∣∣2 =

p∑
a=1

(a,p)=1

p′∑
b=1

(b,p′)=1

∣∣∣∣S (ap +
b

p′

)∣∣∣∣2

≥
p∑
a=1

(a,p)=1

∣∣∣∣S (ap
)∣∣∣∣2 J(p′)

≥ |S(0)|2J(p)J(p′) = |S(0)|2J(pp′).

By induction, we conclude that (8.7) holds since q is a product of k distinct

primes.

We have seen that it suffices to prove (8.8). Let

Z(p, a) =

N∑
n=1

n≡a (mod p)

an.

We note that

|Z(p, a)|2 =
∑

1≤m,n≤N
m≡n≡a (mod p)

anam. (8.10)

Furthermore, if n ≡ a (mod p) and a ∈ Ωp, then n 6∈ E . This is because an

element n in E must satisfy n 6≡ a (mod p) for all a ∈ Ωp. Hence,

Z(p, a) = 0 if a ∈ Ωp (8.11)

since (8.5) implies that an = 0 whenever n 6∈ E .
Now,

p−1∑
a=0

∣∣∣∣S (ap
)∣∣∣∣2 =

p−1∑
a=0

∣∣∣∣∣
N∑
n=1

ane
2πin ap

∣∣∣∣∣
2

=

p−1∑
a=0

∑
1≤n,m≤N

aname
2πi(n−m) ap

= p
∑

1≤n,m≤N
n≡m (mod p)

anam

= p

p−1∑
a=0

∑
1≤n,m≤N

m≡n≡a (mod p)

anam

= p

p−1∑
a=0

|Z(p, a)|2 ,
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where we have used (8.10) in the last equality. In other words, we have

p−1∑
a=0

∣∣∣∣S (ap
)∣∣∣∣2 = p

p−1∑
a=0

|Z(p, a)|2 . (8.12)

Let

χa =

{
1 if a 6∈ Ωp

0 otherwise.

Note that
p−1∑
a=0

Z(p, a)χa = S(0).

By Cauchy’s inequality ∣∣∣∑ anbn

∣∣∣2 ≤∑ |an|2
∑
|bn|2,

we find that∣∣∣∣∣
p−1∑
a=0

Z(p, a)χa

∣∣∣∣∣
2

≤

(
p−1∑
a=0

χ2
a

)
p−1∑
a=0

|Z(p, a)|2 ≤ (p− γ(p))

p−1∑
a=0

|Z(p, a)|2 . (8.13)

But by (8.11) and the definition of S(x), we find that∣∣∣∣∣
p−1∑
a=0

Z(p, a)χa

∣∣∣∣∣
2

= |S(0)|2 . (8.14)

Using (8.12), (8.14) and (8.13), we conclude that

|S(0)|2 ≤ p− γ(p)

p

(
p−1∑
a=1

∣∣∣∣S (ap
)∣∣∣∣2 + |S(0)|2

)
.

Simplifying, we find that

p−1∑
a=1

∣∣∣∣S (ap
)∣∣∣∣2 ≥ γ(p)

p− γ(p)
|S(0)|2,

and this completes the proof of (8.7) for prime number p and the proof of The-

orem 8.1 is complete.



9 Roth’s Theorem on Arithmetic
Progression

This Chapter is a modified version of H. Halberstam’s lecture notes on Circle

Method. See also Chapter 10 of R. C. Vaughn’s book “Hardy-Littlewood Circle

Method.”

9.1 Sets without three terms in arithmetic progression

Let n be a positive integer and M (3)(n) denote the largest number of integers in

[1, n] having no three terms in arithmetic progression among them. Define

µ(3)(n) =
M (3)(n)

n
.

In this chapter, we will show that

µ(3)(n) = O

(
1

ln lnn

)
.

example 9.1 When n = 27, M (3)(27) = 9 and s possible set is

{1, 2, 4, 9, 13, 14, 20, 24, 26}.

9.2 Basic inequalities associated with M (3)(n)

The first observation about M (3)(n) is the “triangle inequality”

lemma 9.1 Let m and n be positive integers. Then

M (3)(m+ n) ≤M (3)(m) +M (3)(n). (9.1)

Let M be a set of integers from [1,m + n] with M (3)(m + n) elements. Then

M ∩ [1,m] has at most M (3)(m) elements. The set M ∩ [m + 1,m + n] has at

most M (3)(n) elements since M −m ∩ [1, n] is a subset of [1, n] with no three

term in arithmetic progression. Therefore (9.1) holds.
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Our next lemma contains several inequalities associated with µ(3)(n) and will

be used throughout the proof of Roth’s Theorem.

lemma 9.2 Let m and n be positive integers. The following are true:

(i) If m|n, then

µ(3)(n) ≤ µ(3)(m). (9.2)

(ii) If m ≤ n, then

µ(3)(n) ≤
(

1 +
1

[n/m]

)
µ(3)(m). (9.3)

(iii) The limit lim
n→∞

µ(3)(n) = µ(3) exists.

Proof

If m|n then from (9.1), we deduce that

M (3)(n) ≤ n

m
M (3)(m)

and (i) follows immediately.

Suppose m ≤ n. Write

n = qm+ r, 0 ≤ r < m

with q = [n/m]. By (9.1),

M (3)(n) = M (3)(qm+ r) ≤M (3)(qm) + µ(3)(r) ≤ qM (3)(m) +M (3)(r).

Since

M (3)(r) ≤M (3)(m),

we conclude that

M (3)(n)

n
≤ q + 1

qm+ r
M (3)(m) ≤ (q + 1)m

qm+ r

M (3)(m)

m

≤ µ(3)(m) +
m− r
qm+ r

µ(3)(m) ≤
(

1 +
1

q

)
µ(3)(m).

This completes the proof of (ii).

Now let n→∞ in (ii) and deduce that

lim supµ(3)(n) ≤ µ(3)(m).

Let m→∞ to deduce that

lim supµ(3)(n) ≤ lim inf µ(3)(m)

and this implies that the limit lim
n→∞

µ(3)(n) = µ(3) exists and (iii) is true.
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9.3 M (3)(n) as an integral

Let M be a set no three term arithmetic progression and |M| = M (3)(n). If

m1 +m3 = 2m2 and m1,m2,m3 are in M, then m1 = m2 = m3. This is because

if m1 6= m2 then the equality will imply that m1,m1+(m2−m1),m1+2(m2−m1)

will be three terms in M which are in arithmetic progression. In other words, if

e(α) = e2πiα and

f(α) =
∑
m∈M

e(mα),

then

M (3)(n) =

∫ 1

0

f2(α)f(−2α) dα.

The above follows from the fact that∫ 1

0

e(αt) dt =

{
1 if α = 0

0 otherwise.
,

and the inner integral of the right hand side of∫ 1

0

f2(α)f(−2α) dα =
∑

m1,m2,m3∈M

∫ 1

0

e((m1 +m3 − 2m2)t) dt

is non-zero only when m1 = m2 = m3.

Write

f(α) =

n∑
r=1

κ(r)e(αr) (9.4)

where

κ(r) =

{
1 if r ∈M

0 otherwise.

In the next section, we will use f(α) to obtain more information for M (3)(n).

9.4 Roth’s Theorem in arithmetic progression

Let

ν(α) = µ(3)(m)

n∑
r=1

e(αr) (9.5)

where m will be chosen later.

We now introduce the function

E(α) = ν(α)− f(α) =

n∑
r=1

(µ(3)(m)− κ(r))e(αr), (9.6)
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where f is given by (9.4).

Let

c(r) = µ(3)(m)− κ(r). (9.7)

Observe that

|c(r)| ≤ 1 (9.8)

since 0 ≤ µ(3)(m) ≤ 1 and κ(r) is either 0 or 1.

Let

F (α) =

m−1∑
s=0

e(−αs) (9.9)

and supposed that n ≥ qm. Note that

F (αq)E(α) =

m−1∑
s=0

n∑
r=1

c(r)e(α(r − qs)), (9.10)

where c(r) is given by (9.7).

Let h = r − qs. We rewrite (9.10) as

F (αq)E(α) =

m−1∑
s=0

n−qs∑
h=1−qs

c(h+ qs)e(αh)

=

m−1∑
s=0

n−qm∑
h=1

c(h+ qs)e(αh)−
0∑

h=1−qs

c(h+ qs)e(αh)−
n−qs−1∑
h=n−qm

c(h+ qs)e(αh)


=

m−1∑
s=0

n−qm∑
h=1

c(h+ qs)e(αh)−R(α), (9.11)

where

|R(α)| ≤
m−1∑
s=0

0∑
h=1−qs

|c(h+ qs)|+
n−qs−1∑
h=n−qm

|c(h+ qs) ≤ qm2, (9.12)

by (9.8).

Let σ(h) =
∑m−1
s=0 c(h+ qs). We may then rewrite (9.11) as

F (αq)E(α) =

n−qm∑
h=1

σ(h)e(αh)−R(α). (9.13)

The next lemma is important.

lemma 9.3 If n > qm, then σ(h) ≥ 0.
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Proof

Note that

σ(h) =

m−1∑
s=0

(
µ(3)(m)− κ(h+ qs)

)
= M (3)(m)−K,

where K is the number of elements of M among {h+ jq|0 ≤ j ≤ m− 1}. Let us

write theseK integers as {h+siq|1 ≤ s ≤ K}. Then {1+si|1 ≤ s ≤ K} is a subset

of [1,m] without 3 term arithmetic progression. In other words, K ≤ M (3)(m)

and therefore,

σ(h) = M (3)(m)−K ≥ 0.

We now recall a lemma known as Dirichlet approximation theorem.

lemma 9.4 Let α ∈ R and N be any positive integer. Then there exists positive

integers a and q with q ≤ N such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

Nq
.

Proof

Consider the numbers 0, {α}, {2α}, · · · , {Nα}. By pigeonhole principle, there

exists ` and k (` > k) such that {kα} and {`α} lie in an interval of the form

[s/N, (s+ 1)/N ]. This means that

|{`α} − {kα}| ≤ 1

N
,

which implies that

|(`− k)α− ([`α]− [kα])| ≤ 1

N
.

Choosing a = [`α]− [kα] and q = (`− k) completes the proof.

We are now ready to estimate E(α) (see (9.6) for the definition of E(α)).

lemma 9.5 Suppose n > 2m2. Then for every α ∈ R,

|E(α)| ≤ π

2
n
(
µ(3)(m)− µ(3)(n)

)
+ 7m2.

Proof

From Lemma 9.4, there are integers a and q such that

|qα− a| ≤ 1

2m
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with q ≤ 2m. Let β = qα− a. The function F (αq) (see (9.9) for the definition of

F (α)) can then be written as

F (αq) =

m−1∑
s=0

e(−sαq) =

m−1∑
s=0

e(−s(β − a)) = F (β).

Now,

|F (β)| =
∣∣∣∣1− e(−βm)

1− e(−β)

∣∣∣∣ =

∣∣∣∣ sinπβmsinπβ

∣∣∣∣ .
Since sinπx ≤ πx and sinπx ≥ 2x for 0 ≤ x ≤ 1/2, we conclude that

|F (αq)| = |F (β)| =
∣∣∣∣ sinπβmsinπβ

∣∣∣∣ ≥ 2m

π
.

Therefore, from (9.13), we conclude that

2m

π
|E(α)| ≤ |F (αq)||E(α)| ≤

n−mq∑
h=0

σ(h) + |R(α)|

= F (0)E(0)−R(0) + |R(α)|,

where we have used (9.3) to conclude that |σ(h)| = σ(h) and (9.13) to deduce

that
n−mq∑
h=0

σ(h) = F (0)E(0)−R(0).

Hence,

|E(α)| ≤ π

2m

(
mE(0) + 2qm2

)
where we have used (9.12) to deduce that

−R(0) + |R(α)| ≤ |R(0)|+ |R(α)| ≤ 2qm2.

Here we check that n ≥ 2m2 > qm. Recall from (9.6) that

E(0) = ν(0)− f(0) = nµ(3)(m)− nµ(3)(()n).

Therefore,

|E(α)| ≤ π

2
n
(
µ(3)(m)− µ(3)(n)

)
+ 2m2π

and the proof is complete after bounding 2π by 7.

Recall that

M (3)(n) =

∫ 1

0

f2(α)f(−2α) dα = I −
∫ 1

0

f2(α)E(−2α) dα,
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where we have used (9.6). Note that

I = µ(3)(m)
∑
a∈M

∑
b∈M

n∑
r=1

∫ 1

0

e(α(a+ b− 2r) dα

=

{
1 if a+ b ≡ 0 (mod 2)

0 otherwise.
.

Let ME and MO be the number of even integers and odd integers in M respec-

tively. Then

I = µ(3)(m)
(
M2
E +M2

O

)
≥ µ(3)(m)

2
(ME +MO)

2
=
µ(3)(m)

2
M (3)(n)2, (9.14)

where we have used the inequality

2(s2 + t2) ≥ (s+ t)2.

Now,

|M (3)(n)−I| ≤
∫ 1

0

|f(α)|2|E(−2α)| dα ≤
∫ 1

0

|f(α)|2 dα
(π

2
n
(
µ(3)(m)− µ(3)(n)

)
+ 7m2

)
,

where we have used Lemma 9.5. By Parseval’s identity,∫ 1

0

|f(α)|2 dα = M (3)(n),

and therefore, if n ≥ 2m2,

|M (3)(n)− I| ≤M (3)(n)
(π

2
n
(
µ(3)(m)− µ(3)(n)

)
+ 7m2

)
. (9.15)

Next,

|M (3)(n)− I| ≥ I −M (3)(n) ≥ µ(3)(m)

2
M (3)(n)2 −M (3)(n)

where we have used (9.14).Therefore, we may deduce from (9.15) that

M (3)(n)

2
µ(3)(m)− 1 ≤ π

2
n
(
µ(3)(m)− µ(3)(n)

)
+ 7m2.

Dividing both sides of the inequality by n, we conclude that

µ(3)(n)µ(3)(m) ≤ π
(
µ(3)(m)− µ(3)(n)

)
+

14m2

n
+

2

n
. (9.16)

Letting n→∞ followed by m→∞ and using the fact that lim
n→∞

µ(3)(n) = µ(3)

exists (see Lemma 9.2), we conclude that(
µ(3)

)2

≤ 0

and therefore,

lim
n→∞

µ(3)(n) = 0
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and the weak form of Roth’s Theorem is true.

To obtain the strong form of Roth’s theorem, let n = 23k and m = 23k−1

. Note

that m3 = n and therefore m2/n = 1/m ≤ 2 which means that n ≥ 2m2. Let

λ(k) = µ(3)(23k). Then from (9.16), we deduce that

λ(k − 1)λ(k) ≤ π(λ(k − 1)− λ(k)) +
14m2

n
+

2

n
,

or

1 ≤ π
(

1

λ(k)
− 1

λ(k − 1)

)
+

30

23kλ2(k)
,

where we have used

λ(k) ≤ λ(k − 1).

From now on, we will not worry about the constant 30 and simply replace it by

c. Now we sum k from ` to 2`+ 1 to deduce that

` ≤ π

λ(2`)
+

c′`

23`λ2(2`)
.

Here we have used the bound λ(2`) ≤ 2λ(k) and 23` ≤ 23k for ` ≤ k ≤ 2` + 1.

We claim that

λ(2`) ≤ C

`

for some constant C. If this were true, then we are done. Suppose

λ(2`) >
C

`
.

Then

λ(2`) ≤ π

`
+

c′

23`λ(2`)
≤ π

`
+

c′`

23`C
.

Choose ` large enough so that

`

23`
≤ C∗

`

and we conclude that

λ(2`) ≤ C†

`

for some constant C†. So we know that for sufficiently large `,

λ(2`) ≤ d

`

for some constant d. Using the same argument, we may deduce that

λ(2`+ 1) ≤ d′

`
.

Therefore

λ(`) ≤ d′′

`
.



128 Roth’s Theorem on Arithmetic Progression

Let n be sufficiently large and choose ` such that

23` ≤ n < 23`+1

.

Note that ` is of the same order as ln lnn. Therefore,

µ(3)(n) = λ(`)� 1

`

implies that

µ(3)(n) = O

(
1

ln lnn

)
and this completes the proof of Roth’s Theorem on arithmetic progression.


